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Abstract
Background: The basal metabolic rate (BMR) of a mammal of mass M is commonly described by
the power function αMβ where α and β are constants determined by linear regression of the
logarithm of BMR on the logarithm of M (i. e., β is the slope and α is the intercept in regression
analysis). Since Kleiber's demonstration that, for 13 measurements of BMR, the logarithm of BMR
is closely approximated by a straight line with slope 0.75, it has often been assumed that the value
of β is exactly 3/4 (Kleiber's law).

Results: For two large collections of BMR data (n = 391 and n = 619 species), the logarithm of
BMR is not a linear function of the logarithm of M but is a function with increasing slope as M
increases. The increasing slope is explained by a multi-compartment model incorporating three
factors: 1) scaling of brain tissue and the tissues that form the surface epithelium of the skin and
gastrointestinal tract, 2) scaling of tissues such as muscle that scale approximately proportionally
to body mass, and 3) allometric scaling of the metabolic rate per unit cell mass. The model predicts
that the scaling exponent for small mammals (body weight < 0.2 kg) should be less than the
exponent for large mammals (> 10 kg). For the simplest multi-compartment model, the two-
compartment model, predictions are shown to be consistent with results of analysis using
regression models that are first-order and second-order polynomials of log(M). The two-
compartment model fits BMR data significantly better than Kleiber's law does.

Conclusion: The F test for reduction of variance shows that the simplest multi-compartment
allometric model, the two-compartment model, fits BMR data significantly better than Kleiber's law
does and explains the upward curvature observed in the BMR.

Introduction
The basal metabolic rate (BMR) has been extensively
measured in mammals that are "mature, in postabsorp-
tive condition, measured in the range of metabolically
indifferent environmental temperatures, and at rest, or at
least without abnormal activity" [1]. The scaling exponent
β in the conventional allometric expression,

BMR = αMβ,  (1)

can be estimated from data on BMR for animals of mass
M as the value that minimizes the sum of squares of resid-
uals (SSR), where a residual is defined as log(αMβ) -
log(BMR). This procedure is termed least-squares logarith-
mic regression (LSLR). For the model of Equation (1), the
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procedure is equivalent to regression of the logarithm of
BMR on the logarithm of M, which calculates the maxi-
mum-likelihood estimate (MLE) of β when the distribu-
tion of residuals is Gaussian. Analyses of metabolic rate
data in the 19th century showed that the scaling exponent
β for mammals at rest is less than 1. In the best-known
19th century study of the resting metabolic rate, Rubner
[2] argued that the rate of metabolism is proportional to
the 2/3 power of body mass. Rubner's 2/3-power law was
widely used for metabolic scaling for several decades. In
the 20th century, the law was questioned following anal-
ysis of BMR data by Kleiber [1,3] and Brody [4,5]. For data
collected by these physiologists, the MLE for β determined
by LSLR is close to 3/4. Based on these results, the 3/4-
power law (Kleiber's law),

BMR = aM0.75,  (2)

became widely used in physiology and ecology.

More recent analysis of BMR data sets that are much larger
than those used initially to support the 3/4-power law has
shown that the MLE for the scaling exponent is between 2/
3 and 3/4 [6-11]. The largest of these data sets comprises
BMR values from 619 mammalian species [11]. The 95%
confidence interval (CI) for β from LSLR of their data is
0.674 – 0.701 with the MLE of 0.687. Including an adjust-
ment for the effect of body temperature on BMR gives a
MLE of 0.67. Analysis of other large data sets has also
shown that the slope of the logarithm of BMR, plotted as
a function of logarithm of M, increases as M increases
[10,12,13].

Several theories that predict a value for the BMR scaling
exponent have been critically reviewed. Dodds et al. [13]
conclude their assessment of both the scaling of BMR and
of theories that predict 3/4-power scaling by stating "we
find evidence that there may not be a simple scaling law
for metabolic rate, and if it were to exist, we also find little
compelling evidence that the exponent should be α = 3/
4." Agutter and Wheatley [15] conclude in their review of
models that offer explanations for the allometric scaling
of BMR that none of them can be universally accepted and
that no model has yet addressed every relevant issue.

Critical evaluations of two prominent theories for the
basis of 3/4-power scaling have been published [15,16].
The evaluation of the theory of West et al. [17], which is
based on maximization of the scaling of nutrient
exchange surface area in a fractal distribution network,
questions their assumption that the fractal dimension of
an object in 3-dimensional space can be equal to 4. The
evaluation of the theory of Banavar et al. [18,19], which is
based on mathematical properties of outward-directed
supply-demand networks, points out that the fundamen-

tal theorem in this theory requires the assumption that
nutrient uptake rates at uptake sites are statistically inde-
pendent of the distance from the heart to a site. This
assumption is questionable for the system of arteries and
capillaries because nutrient uptake for all cells other than
endothelial cells occurs through the capillary walls, which
are the most distant sites in the model.

Two recently published mathematical models of BMR
scaling appear to be compatible with values of the scaling
exponent other than 3/4. The first is the Allometric Cas-
cade Model [20], which is discussed below. The second is
based on quantum mechanics of the electron transport
system (ETS) and on resource availability [21]. In this
model, parameters describing the ETS are determined by
natural selection. For mammals in environments with
scarce but dependable resources, the selected parameters
correspond to 3/4-power scaling. For animals that have
ample but temporarily available resources, parameters
corresponding to 2/3-power scaling are selected.

In the Allometric Cascade Model, Darveau et al. [20] pro-
pose that the metabolic rate of a mammal can be
described by the sum of power functions,

Individual power-function terms describe the scaling of
the energy requirement for a specific biochemical process.
Examples are the energy requirement for protein synthe-
sis, for Ca++ transport across the cytoplasmic membrane
and for Na+ transport across the cytoplasmic membrane.

While this model has been criticized for being tautological
[22,23], it is clearly different from the conventional power
law of Equation (1) whenever the exponents βi do not all
have the same value. As shown below, the logarithm of
the metabolic rate in Equation (3), plotted as a function
of the logarithm of M, has a slope that increases as M
increases, while this slope is the constant value β for Equa-
tion (1).

An expression for the BMR that is equivalent to Equation
(3) can be derived from the conceptualization of Heusner
[24] based on scaling of the mass of individual tissues and
organs (e.g., bone or brain). As reviewed by Brown et al.
[25], allometric scaling exponents for the mass of an
organ or organ system vary considerably. For example, a
MLE of the scaling exponent for bone mass is 1.09 [26],
and an average of MLEs of the scaling exponent for brain
mass is 0.73 [27]. The anatomical conceptualization has
also been used to develop a five-compartment anatomical
model (brain, liver, kidney, heart and all other organs) as
an explanation for Kleiber's law [28]. The anatomical con-
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ceptualization is the basis of the metabolic compartments
in the models studied in our report.

The metabolic scaling of an organ or tissue depends on
both the scaling of the mass of the organ or tissue and the
scaling of the metabolic rate per unit mass of the organ or
tissue, i.e., the specific metabolic rate (SMR). The SMR has
been measured in vitro as oxygen uptake by tissue or cell
cultures from mammals of different sizes. LSLR of the data
of Krebs [29] gives estimates of the scaling exponent k for
SMR of -0.07 (kidney cortex), -0.07 (brain), -0.12 (liver),
-0.14 (spleen) and -0.10 (lung). Estimates of k from the
data of Couture and Hulbert [30] are -0.21 (liver) and -
0.11 (kidney). The estimate of k from hepatocyte cell cul-
tures is -0.18 [31].

One goal of this paper is to develop mathematical expres-
sions for BMR that are based in part on the Heusner con-
ceptualization and in part on results of tissue culture
metabolic rate studies. A second goal is to derive predic-
tions of the equations for BMR and to determine whether
the predictions are consistent with the BMR data
described above.

Assumptions and input data
The first assumption in our theory for BMR scaling is that,
for each cell type contributing significantly to energy
metabolism, the SMR, in the physiological state when
BMR is measured, is closely approximated by a simple

allometric expression . The second assumption is
that, for each cell type contributing significantly to energy
metabolism, the cell mass is closely approximated by a

simple allometric expression . These assumptions
imply that BMR scaling can be closely approximated by
Equation (3), where αi = ciai and βi = k1+bi. If these
assumptions are correct, Equation (3) states the tautology
that the metabolic rate is equal to the metabolic rates of
the tissues composing the mammalian body. This equa-
tion describes a family of scaling models with an unspec-
ified number of parameters. Because the number of
degrees of freedom is undefined, it is not possible to make
a standard comparison of the goodness of fit of this gen-
eral model with that of the conventional allometric power
function. To evaluate whether the above assumptions can
better predict the scaling of BMR, we identify relatively
simple models in the family that appear to be good
approximations of more complex and possibly more pre-
cise models, and we test these simple models for goodness
of fit to large BMR data sets.

The scaling exponent for the mass of a number of mam-
malian organs or tissues is close to 1. For example, the
MLE of the scaling exponent for the mass of the largest tis-
sue, muscle tissue, calculated from the data of Weibel et al.

[32] is 1.01. The MLE of the scaling exponent for tissues
forming the skeleton is 1.09 [33]. MLEs of the scaling
exponent for the mass of the heart, which is mostly car-
diac muscle tissue, are 1.00 [34]0.99 [35] and 0.98 [36].
The MLE of the scaling exponent for the mass of the
spleen, which largely comprises red and white pulp of
hematopoietic origin, calculated from the data of Stahl
[36] is 0.92.

The scaling exponent for the mass of skin estimated by
Pace et al. [37] is 0.96. However, it would be incorrect to
conclude that the mass of the most metabolically active
tissue in skin has a scaling exponent of approximately
0.96. This is because skin consists of a relatively acellular
tissue, the dermis, that makes up most of the mass of skin
and a thin, highly cellular layer, the epidermis. Histologi-
cal examination of the epidermis reveals that the thickness
of metabolically active cells in the stratum Malpighi does
not increase proportionally with mammalian linear body
dimensions. For example, the thickness of the stratum
Malpighi is approximately 10 µm and 16 µm in mice and
rats, respectively, and 26 µm and 28 µm in horses and
cows, respectively [38], and the scaling exponent for thick-
ness of this layer is approximately 0.09. Combining this
exponent with an estimate of the scaling exponent for the
surface area of the epidermis, 0.66 [39], give the estimate
0.75 for the scaling exponent of the mass of cells in the
stratum Malpighi. The scaling exponent for the dermis,
which accounts for nearly all of the mass of skin, is
assumed to be close to the estimate of the scaling expo-
nent for skin, 0.96.

The scaling exponent for the mass of the gastrointestinal
tract is also close to 1. However, histological examination
reveals a metabolically active layer of cells forming the
epithelium of the GI tract. The thickness of this layer var-
ies from region to region in the GI tract, but for a region
(e.g., colon) the thickness is nearly identical in small and
large mammals [40]. Therefore, the mass of this tissue
scales with intestinal surface area, which is assumed to be
proportional to body surface area. Other tissues that may
scale approximately with body surface area are the epithe-
lial tissues of the mucous membranes of the eyes, mouth,
pharynx and upper respiratory tract. One organ with a
scaling exponent that is closer to that of body surface area
than the scaling exponent for body volume, 1, is the brain
with a scaling exponent of 0.73 [27].

The next step in deriving a useful approximation for Equa-
tion (3) is to replace sums of scaling terms with exponents
that cluster around a central value by a single power
function with an exponent that is equal to the central
value. The αi-weighted average of the βi values in the clus-
ter is a reasonable choice for the central value. However,
estimates of αi are not available for most tissues. The
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unweighted average of the values of βi in the cluster is not
used because it can be manipulated by subdividing an
organ, e.g., subdividing the small intestine into duode-
num, jejunum and ileum. The midpoint of the cluster is
chosen as the exponent for the power function that
approximates the sum of terms with similar values of βi.
This midpoint is estimated as the midpoint of the values
of ki plus the midpoint of the values of bi because values of
ki are not available for certain tissues. For scaling of the
brain and the epithelial tissues of the skin and gastrointes-
tinal tract, the midpoint of the values of bi is 0.71. The
midpoint of the values of ki is -0.14, the midpoint of the
values of scaling exponents for the SMR of tissues
reviewed in the introduction. Therefore, the scaling of the
BMR contribution of this compartment, termed the epi-
thelium-brain compartment, is approximately described
by

BMReb = aebM0.57,

where aeb is a constant.

Estimates for the scaling exponents for adrenal, heart,
muscle, spleen and bone tissues as well as those for non-
epithelial tissues of the skin and gastrointestinal tract
form a second cluster. Again, the central value of ki+bi is
estimated as the midpoint, 1.00, of the bi values in this
cluster plus the midpoint of ki values, -0.14, selected
above. Therefore, the scaling of the BMR contribution of
tissues in this compartment, termed the volume compart-
ment, is approximately described by

BMRv = avM0.86,

where av is a constant.

Finally, the overall BMR scaling expression is approxi-
mated as the sum of the BMR approximation for the epi-
thelium-brain compartment and the approximation for
the volume compartment, giving the two-parameter
expression

BMR = aebM0.57 + avM0.86.  (4)

This two-compartment model does not include the scal-
ing of liver and kidney tissue, which is between the scaling
of the epithelium-brain compartment and the volume
compartment. The liver-kidney compartment is omitted
because it does not affect the asymptotic behaviour of the
model and because we choose to first test the usefulness
of the simplest examples of Equation (3), which are two-
compartment models. In the following section we com-
pare the goodness of fit of (4) with that of the single com-
partment model of Equation (1) and with that of the
general two-compartment allometric model

Note that the slope, d log(BMR)/d log(M), is determined
by a single parameter, the ratio aeb/av, for Equation (4) and
is determined by three parameters, β1, β2 and α1/α2 for
Equation (5).

The first prediction for these multi-compartment allomet-
ric models is that log(BMR) expressed as a function of
log(M) has a slope that is strictly increasing. This can be
seen by writing the sum of power functions in Equation
(3) in order of increasing magnitude of the term scaling
exponent as

where y = ln(M) and βi ≠ βj for i ≠ j. We define

 and rewrite the above equation as

F(y) = F1(y) + F2(y) + ... + Fn(y).  (6)

We next express d ln(F)/dy as

βn- [(βn-β1)F1(y)/F(y) + (βn-β2)F2(y)/F(y) + ... + (βn-βn-

1)Fn(y)/F(y)].

Because each term (βn-βi)Fi(y)/F(y) is positive and strictly
decreasing as y and M increase, the above derivative is
strictly increasing.

The second prediction is that the above slope approaches
βn as M increases (and y increases) and approaches β1 as M
decreases (and y decreases). The asymptotic behaviour for
large M follows from the observation that each term (βn -
βi)Fi(y))/F(y) in the above derivative goes to 0 as y and M
increase. The asymptotic behaviour for small M follows
from writing the derivative as

β1 + [(β2-β1)F2(y)/F(y) + (β3-β1)F3(y)/F(y) + ... + (βn-
β1)Fn(y)/F(y)],

and noting that each term [(βi-β1)Fi(y)/F(y) approaches 0
as y decreases and M approaches 0.

The third prediction is that log(M) is approximately
described by

log(BMR) = A + B [log(M)] + C [log(M)]2,  (7)

where C is positive. To derive Equation (7), we modify the
analysis of Painter and Marr [41] developed for continu-
ous statistical distribution functions. For a specified value
of M, we treat the numbers βi as discrete random variables.

BMR M M= + ( )α αβ β
1 2

1 2 . 5

F y e e ey y
n
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1 2
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The probability associated with βi is pi = αi/(∑ai) assuring
that ∑pi = 1. Because M is fixed, the second-order Taylor's
expansion of Fi(y) about the mean value E(βi) = ∑[piβi] is

where S = (∑ai). Substitution of the Taylor's expansions of
all Fi(y) into Equation (6) gives

Substitution of E(βi) for ∑[piβi] and 1 for ∑pi gives

 where Var(βi)

denotes ∑[pi(βi - E(βi))2], the variance of βi. The approxi-
mation ln(1+x) = x, gives

ln(BMR) = ln(S) + E(βi) ln(M) + 1/2 Var(βi)[ln(M)]2.

The equivalent expression for log10(BMR) is

log10(BMR) = log10(S) + E(βi) log10(M) + 1/2
Var(βi)ln(10)[log10(M)]2  (8)

For symmetrical distributions, the approximations used
to derive the above formula underestimate the second
derivative. The maximum value of the second derivative
of log(BMR) with respect to log(M) can be calculated by
defining a second distribution fi = Fi(y)/F(y). By differen-
tiation of lnF(y) with respect to y, it can be shown that the
second derivative reaches a maximum when ∑[βifi -
(∑βifi)]3 = 0, i.e., the third moment of the distribution is 0.
The value of M where this occurs is obviously in the range
of the values of βi. The value of the second derivative at
this point is equal to the fi-weighted variance of βi values.

For the model in Equation (4), the slope is predicted to
increase from approximately 0.57 to approximately 0.86
(Prediction 2), and the second derivative reaches a maxi-
mum (curvature) at the size M = Mm, where Mm satisfies
aebMm

0.57 = avMm
0.86. At this value of M, the epithelium-

brain compartment and the volume compartment con-
tribute equally to BMR. The second derivative of
log10(BMR) with respect to log10(M) at this value is the fi-
weighted variance, [(0.86 - 0.57)/2]2, multiplied by
ln(10). This product is 0.048. If Equation (8) is used to
estimate the second derivative, the coefficient of
[log10(M)]2 in Equation (7) is estimated to be 0.024.

Evaluation of model predictions
Table 1 shows that the slope from LSLR of BMR data from
mammals weighing less than 0.2 kg is less than 2/3 for
both the data of Heusner [10] and the data of White and
Seymour [11]. For both of these data sets, the slope is
greater than 3/4 for mammals weighing more than 10 kg.
Remarkably, the 95% CIs for the slope of small mammals
(<0.2 kg) and large mammals (>10 kg) from the White
and Seymour data have no overlap. These results are sim-
ilar to results of earlier investigations [10,12]. The CIs for
the slope of the regression line for small mammals are
consistent with Prediction 2 as are the CIs for the slope of
the regression line for large mammals.

Second-order polynomial regression of log10(BMR) yields
a coefficient of [log10(M)]2 of 0.038 with 95% CI of 0.026
- 0.049 from the data of Heusner and yields a coefficient
of [log10(M)]2 equal to 0.030 with 95% CI of 0.019 – 0.042
from the data of White and Seymour. The estimate for the
coefficient of the second-order term, 0.024, from Taylor's
approximation and the maximum value of the second
derivative, 0.048, bracket the MLE for C calculated from
both the Heusner and the White and Seymour data. Cur-
vature of similar magnitude has been noted by second-
order polynomial regression of BMR data (8) and breath-
ing rate data [42].

Table 2 lists the minimal SSR for empirical values of
log(BMR) when Equations (1), (2), (4), (5) and (6) are
used to predict log(BMR). The two-parameter model of
Equation (4) and the three-parameter model of Equation
(7) fit the data approximately equally well, and these
models fit the data better than the conventional allomet-

Table 1: Results of regression analysis of the logarithm of basal metabolic rate on the logarithm of body mass.

Body mass n Slope (95% CI) Reference

0.0025 – 367 kg 391 0.707 (0.691 – 0.724) 10
0.0025 – 0.200 kg 208 0.624 (0.608 – 0.717) 10
0.200 – 10.00 kg 150 0.707 (0.657 – 0.757) 18
10.00 – 367 kg 33 0.877 (0.700 – 1.06) 10
0.0024 – 326 kg 619 0.687 (0.674 – 0.701) 11
0.0024 – 0.200 kg 382 0.652 (0.613 – 0.692) 11
0.200 – 10.00 kg 206 0.718 (0.674 – 0.761) 11
10.00 – 324 kg 31 0.902 (0.706 – 1.10) 11

Sp e y E y Ei
yE

i i i i
i( ){1 [ ( )] [ ( )]β β β β β+ − + −1

2
2 2 },

F(y)= Se { ( )] ( ( )) ]}yE( ) 1
2

2 2iβ β β β βi
i i i i i i i ip y p p E y p E+ − + −∑∑∑ [ [ .

F y Se y VaryE
i

i( ) {1 ( )}( ) 1
2
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ric scaling model described by Equation (1) does. For the
optimal fit of the four-parameter model of Equation (5)
to the data of White and Seymour, β1 and β2 are 0.56 and
0.91, respectively, and the MLE for α1/α2 is 0.57/0.43. The
MLE estimates for β1 and β2 are close to the exponents in
Equation (4) estimated from data gathered by necropsy
and in vitro studies. Therefore, it is not surprising that the
fit of Equation (5) is only slightly better than the fit of
Equation (4).

When the F test for reduction of variance is used to com-
pare the fit of Kleiber's law, Equation (2), to the other
models using the Heusner data, none of the models fits
significantly better, but the probability of the calculated F
statistic for models (4), (5) and (7) is close to 0.05. When
the F statistic is calculated using the White and Seymour
data, the fit of models (4), (5) and (7) is significantly bet-
ter than the fit of Kleiber's law using the P < 0.05 criterion.

If Equation (4) and Equation (5) are good approxima-
tions and if the parameters in these equations are accu-
rately estimated, they should predict BMR values from
body-weight data that are consistent with measured val-
ues. A relevant measure of consistency is the scaling expo-
nent from LSLR. Table 3 lists scaling exponents from BMR
prediction using body-weight data from Heusner [10] and
from Kleiber [1,3]. Parameters used for the predictions are
MLEs from fitting the equations to the data of White and
Seymour, which is the most powerful data set for this pur-
pose. Each of the scaling estimates from analysis of pre-
dicted BMR data is within the experimentally defined
confidence interval for the scaling exponent. Note that no
information on metabolic rates in the studies of Heusner
and Kleiber is used in generating the BMR predictions.

Discussion
In comparing Equation (1), the conventional allometric
model, with the 2-parameter alternative, Equation (4), it
is clear that the presence of positive curvature of the loga-
rithm of BMR versus the logarithm of body mass is cor-

rectly predicted by Equation (4) and not by Equation (1).
For both small mammals and large mammals, Equation
(4) yields predictions for the slope of BMR data that are in
the CIs for the slope determined from LSLR of large data
sets. Equation (1) yields no predictions of slopes. In addi-
tion, the exponents in Equation (4) are based on pub-
lished scaling relationships for organs, on well-known
patterns of cell organization in animal tissues and on a
repeatedly documented, although poorly understood,
relationship between cell metabolic rate and body mass
that was discovered by Krebs [28]. In Equation (1), the
scaling exponent is a fitted parameter with little support of
prior information other than past examples showing that
it is a useful predictive tool.

When BMR predictions are made by Equation (4) and (5)
using MLEs of parameters calculated by fitting the White
and Seymour data, scaling exponents from LSLR of predic-
tions based on body-weight data of Kleiber are greater that
those from LSLR of body-weight data of Heusner. The dif-
ference between scaling exponents for these two data sets
is the result of very different distributions of body weight
in the two data sets. Kleiber [1,3] included only one small
mammal (< 0.2 kg) in his first analysis of 13 data points
and one small mammal in his second analysis (26 data

Table 2: Minimal sum of squares of residuals (SSR) and P values from the F test for reduction of variance for models that predict the 
basal metabolic rate

Model SSR P* SSR/n SSR P* SSR/n

Kleiber's Law 18.87 0.0306 12.99 0.033
Equation (1) 16.62† 0.057† 0.0269† 12.35‡ 0.28‡ .0316‡

Equation (4) 15.98† 0.019† 0.0258† 11.26‡ 0.070‡ .0288‡

Equation (5) 15.90† 0.017† 0.0257† 11.17‡ 0.065‡ .0286‡

Equation (7) 15.93† 0.018† 0.0257† 11.13‡ 0.065‡ .0280‡

* P value for reduction of variance calculated using the F test. The variance in the numerator is the variance from the optimal fit of Kleiber's law.
† Calculated using data from reference 11
‡ Calculated using data from reference 10

Table 3: Scaling exponents from LSLR of BMR predictions using 
Equation (4) or Equation (5) with parameters that optimise the 
fit to data of White and Seymour.

Source of body-weight data BMR predictions based on:
Equation (4) Equation (5)

Heusner (10) 0.701 0.704
Kleiber (1, 3)† 0.728 0.744

† To make the data of Kleiber comparable to other data sets analysed, 
multiple data points for a species were replaced by a single data point 
calculated as the average value of body weight and the average value 
of BMR for the species. The MLE and 95% CI for the scaling exponent 
calculated from LSLR are, respectively, 0.750 and 0.728 – 0.771.
Page 6 of 8
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points). In the data sets of Heusner [10] and White and
Seymour [11], well over one-half of the mammals weigh
less than 0.2 kg. Furthermore, 61 percent of the mammals
in Kleiber's data sets are large (>10 kg) while only 8 per-
cent of Heusner's mammals and 5 percent of White and
Seymour's mammals are large. Thus, it appears that the 3/
4-power law was "discovered" because the BMR data that
came to the attention of Kleiber were largely from studies
of mammals weighing more than 0.2 kg.

The allometric cascade model may give predictions for the
scaling exponent of small mammals and the exponent of
large mammals that are similar to the predictions of the
multi-compartment model based on the anatomical con-
ceptualization. Indeed, these two versions of the multi-
compartment model are compatible, and the scaling
behavior of individual organ and tissue SMRs may be
derivable from the allometric cascade model when data
on tissue-specific scaling of components of the cellular
energy budget are available.

While the multi-compartment scaling model predicts the
positive curvature of mammalian log(BMR) data, under-
standing of the overall slope requires an understanding of
the control of cellular SMR. One potential source for a
mechanistic understanding of the control of cellular met-
abolic rates is the model of Demetrius [21] described in
the introduction.

An alternative mechanistic model for cell and tissue SMR
can be developed from a tissue blood flow model similar
to the pulmonary venous flow capillary pressure (PVFCP)
model [43]. A key assumption of this model is that the
cardiac output rate at the maximum metabolic rate
(MMR) is determined by a critical value of pressure in pul-
monary capillaries. When the pressure in capillaries rises
above the critical pressure, pulmonary edema develops,
and the rate of uptake of oxygen into blood in the capil-
laries decreases.

As explained in the PVFCP model, pressure in capillaries
necessarily falls as the rate of blood flow in a tissue
decreases (assuming that the level of constriction in veins
draining the tissue does not change). Tissue fluid and the
fluid in lymph come from blood in capillaries when the
pressure is above the oncotic pressure (approximately 20
mm Hg). Consequently, there is a critical capillary blood
pressure below which the supply of tissue fluid and lymph
becomes inadequate. If it is assumed that, in the basal
metabolic state, blood flow in a tissue or organ is the flow
that generates this critical pressure and that tissue meta-
bolic rate is proportional to blood flow, then tissue SMR
is predicted to fall as tissue or organ size increases.

Another possible source of a correct explanation for cellu-
lar metabolic rates may come from anatomical and bio-
chemical studies. Experimental investigations of cells
from mammals of different size suggest that this control
may be related to cell membranes. As reviewed by Hulbert
and Else [44] cellular SMR is correlated with the polyun-
saturated fatty acid content of cell membranes. In cultured
hepatocytes, the cellular SMR is correlated with the surface
area of inner mitochondrial membranes per gram of cell
mass [45,46]. The mechanisms for controlling the poly-
unsaturated fatty acid composition of membranes and the
surface area of mitochondria are unknown. Their discov-
ery may complete our understanding of the scaling of the
BMR.

Conclusion
The multi-compartment allometric model follows directly
from observations on the scaling of tissues and organs and
from observations on the scaling of tissue SMRs. The sim-
plest multi-compartment allometric model, the two-com-
partment model, fits BMR data significantly better than
Kleiber's law does and explains the upward curvature
observed in BNR.
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