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Abstract

Background: We review and extend the work of Rosen and Casti who discuss
category theory with regards to systems biology and manufacturing systems,
respectively.

Results: We describe anticipatory systems, or long-range feed-forward chemical
reaction chains, and compare them to open-loop manufacturing processes. We then
close the loop by discussing metabolism-repair systems and describe the rationality of
the self-referential equation f = f (f). This relationship is derived from some boundary
conditions that, in molecular systems biology, can be stated as the cardinality of the
following molecular sets must be about equal: metabolome, genome, proteome. We
show that this conjecture is not likely correct so the problem of self-referential mappings
for describing the boundary between living and nonliving systems remains an open
question. We calculate a lower and upper bound for the number of edges in the
molecular interaction network (the interactome) for two cellular organisms and for two
manufacturomes for CMOS integrated circuit manufacturing.

Conclusions: We show that the relevant mapping relations may not be Abelian, and
that these problems cannot yet be resolved because the interactomes and
manufacturomes are incomplete.

Background
Systems biology is a domain that generally encompasses both large-scale, organismal

systems [1], and smaller-scale, cellular systems [2]. The majority of contemporary sys-

tems biology falls under the cellular-scale studies with the large goals of understanding

genome to phenome mapping. This cellular-scale, or molecular systems biology, may

also contribute to synthetic biology by becoming the theoretical underpinning of that,

largely, engineering discipline; and it may also contribute to a perennial question of

physics - the difference between living and non-living matter. It is this latter question

that concerns us in this paper.

There is significant other research focusing on defining the difference between living

and nonliving matter. These including: category theory [3,4], genetic networks [5], com-

plexity theory and self-organization [4-7], autopoiesis [8], Turing machines and informa-

tion theory [9], and many others that are not reviewed here. It would take a full-length

book to review the many subjects that already come into play in discussing the boundaries
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between living and nonliving. Here we concern our self only with factory system analogies

and cellular molecular networks, as we explore the boundaries that define life.

Several disparate mathematical and analytical techniques have been brought to bear

on defining and analyzing molecular network systems [10,11]. For example, Alon [12]

focuses on understanding the logic of small-scale biomolecular networks; Kaneko [2]

studies systems biology from a dynamical systems point including molecular, cellular

development and phenotypic differentiation and fluctuations; Huang et al. [13] consid-

ers the gene networks from a dynamics perspective, in particular as dynamic land-

scapes settling to attractor states and limit cycles; and Palsson [14], focus on metabolic

and biochemical networks using very large systems of differential and difference equa-

tions. Fisher and Henzinger [15] have reviewed other mathematical methods, such as

Petri nets, Pi calculus and membrane computing.

The Petri net approach to systems biology is reasonable and draws on analogies from

manufacturing systems [15-17]. Armbruster et al. [18] outline and describe the simila-

rities between networks of interacting machines in factory production systems and cell

biology, and Iglesias and Ingalls [19] describe analogies between control theory and

systems biology. Casti [20,21] makes mathematical analogies between factory systems,

control theory and connects it to cellular biology via a set of mathematical tools

known as category theory. The primary, and still the main work, on category theory to

biology is Rosen [3,22,23]. He defines it as relational biology.

Relational biology, as defined by Rosen [3], is a mathematical exploration of the prin-

ciples, of the boundary between living and non-living phenomena. His approach was

based on category theory. Our exploration of this area of relational biology will draw

on analogies between factory systems and biological systems. Our primary references

for that section of our review will be Casti [20,21].

Main text
Anticipatory Systems

At a fundamental level cells, like factory production systems contain anticipatory sys-

tems, and much of the mathematics associated with factories can be exploited for sys-

tems biology. We start by analyzing the feed-forward system known as the coherent

feed-forward loop described by Alon [12] and Mangan et al. [24]. It is a very common

network motif in molecular system networks. An abstract example of the arabinose

system of Escherichia coli is shown in Figure 1. Another example is the MAP kinase

cascade. These are known as anticipatory systems and contain within themselves mod-

els of the system and the system controller. The phrase anticipatory system, by itself,

seems to ignore causality. But in fact the causality is preserved by the fact that the

model uses information from prior system states to predict future states. These antici-

patory systems are said to be able to anticipate the future, but as we will see, these sys-

tems contain implicit system models of process controllers that enable them to

seemingly anticipate the future. Because there is no explicit model, the actual process

being controlled can drift in performance due to subsystem changes.

Figure 1 shows a flow diagram of an anticipatory system. The only assumptions in this

model are that each chemical species is “processed” by a unique enzyme to produce

another chemical species. The environment, E, sends signals to the system, ∑. The

model, M, reads the state of the system. The controller, C, sends signals to the system

and the model. Causality is preserved by the fact that the past influences the prediction.
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As an example of an anticipatory system consider the chemical reaction network

shown in Figure 1. A chemical substrate Ai is in the reaction sequence at i. The rate of

the chemical reaction, or conversion of Ai to Ai+1, is given by ki+1, and i = 1,2, ...,n are

the individual molecular substrates. The reaction from A0 ® An is known as a forward

activation step. Concentration of A0 activates the production of An. In other words,

concentration of A0 at t predicts concentration of An at t + τ. Essentially then, kn = kn
(A0) and we leave all other ki constant.

The reaction rates for the system can now be written as:

dAi

dt
= kiAi−1 − ki+1Ai

dAn

dt
= kn(A0)An−1

i = 1, 2, . . . ,n − 1

The forward activation step stabilizes the level of substrate An-1 in the face of envir-

onmental fluctuations to the initial substance, A0. This stabilization is achieved through

the relation:

dAn−1

dt
= 0

This shows that stabilization is independent of A0, and we can write the rate equation

for this as kn-1 An-2 = kn (A0) An-1. This relationship can be achieved by the linear system:

An−2(t) =

t∫

0

K1(t − s)A0(s) ds

An−1(t) =

t∫

0

K2(t − s)A0(s) ds

Σ
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Figure 1 Flow diagram of an anticipatory system (left), and a simple chemical reaction network
diagram (right).
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In this system, K1 and K2 are functions of the rate constants, ki, i = 1,...,n - 1. This

clearly shows that A0 determines the values of An-1 and An-2 at future times. The con-

trol condition for kn (A0) must show that the rate for any step at any given time point

be determined by the value of A0 at a prior time:

kn(A0) = kn−1

t∫
0
K1(t − s)A0(s) ds

t∫
0
K2(t − s)A0(s) ds

Given the fact that there is some production time associated with any given protein (i.

e. kinetics), this model provides insight into a possible system stabilization mechanism,

in the face of either environmental fluctuations and/or gene expression variability. This

could explain the reason that “higher” organisms have a longer signaling cascade than

bacteria. In this model homeostasis is preserved by the anticipation or prediction of An-1.

This is known as open-loop control, in engineering, because the system controller feeds

into the process to be controlled without any signals feeding back from the process to

the controller. The hazard in this type of control is it can result in global system failure.

To describe the weakness of open-loop control, or feed-forward control, assume our

system, ∑ (e.g. factory or cell) is composed of N subsystems. The following input/out-

put relation can give the behavior of any one subsystem Si :

ϕi
(
ui(t), yi(t + h)

)
= 0

ui ∈ Rm, yi ∈ Rp, i = 1, 2, . . . ,N

The input is represented as ui and spans a real m-space. The output is represented

as yi and spans a real p-space. The output from the subsystem is, of course a future

time, represented as t+h, and the input occurs at time t. The subsystem can receive

inputs either from other subsystems or from external sources.

The subsystem Si operates according to the function �i (ui (t), yi (t + h)), and is

behaving well when the input and outputs are within the specified space (ui, yi) Î Rm

× Rp.

Analogously, the overall system ∑ has its own inputs, ν Î Rn and output(s) ω Î Rq

relations that exist in some space Ω ⊂ Rn × Rq. In order to evaluate the health of the

system (factory or biological cell) there are four logical possibilities:

1. Each subsystem Si is operating optimally, therefore the global system ∑ is operat-

ing optimally.

2. The global system is operating optimally, therefore each subsystem is operating

optimally.

3. Any subsystem failure gives rise to global system failure.

4. The health of a subsystem is not related to the health of the global system.

The fourth possibility we will reject as being unreasonable for real-world systems.

The third possibility is valid only if there are no redundancies in the global system;

again not realistic for either cells or real world factories. The first possibility is the

opposite of possibility number two, which we will describe in detail and is referenced

in Figure 2 for subsystem Si.
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The input to the model, E, is from the environment. The model output, the pre-

dicted input for the process, is sent to the controller. The output from the controller,

r, is the control vector and is sent to the process, as are other inputs from other sub-

systems. It is important to realize that the process, ϕr
i governs the subsystem, Si which

processes its input, ui (t + h) at a later time t + h.

Correct behavior of the global system ∑, indicates that the inputs and outputs lie

within an acceptable region of Ω. For proper functioning of the global system, ϕr
i must

be adapting properly in the feed-forward loop. This proper functioning depends on the

fidelity of model M. If the model is not updated from internal process signals then at

some point the model will no longer be correct. Real world processes will have subsys-

tems that degrade. This will result mean that the controller, and thus the model, are

no longer commensurate with reality. In general there will be a time, T, at which this

is no longer the case. M will effectively drift away from ideal behavior because there

are no updates to the model. At this point the process �i is said to be incompetent.

For a linear anticipatory system this will lead to ∑ system failure.

Biological cells are excellent examples of systems that contain internal models of

themselves. Biology adapts to this lack of model fidelity in feed-forward networks by a

repair function. Basically, a cell has two related process, metabolism and repair. Let A

represent a set of environmental inputs to the cell and B represent a set of output pro-

ducts. Then the set of physically realizable metabolisms is given by H(A, B). We can

write the metabolic map as f : A ® B. We assume for the sake of argument that this

map is bijective, so elements of the two sets map to each other a ↦ b.

Biology solves the model fidelity problem either by subsystem repair, or in some

cases apoptosis - discard the system and start over. The repair operation R, is designed

to restore metabolism f, when a particular environmental variable, a is a fluctuating

time-series. This may involves synthesis of several enzymes and/or promoters to

induce gene expression. Since we are assuming bijection and a ↦ b, then the subsys-

tem output y must also be a fluctuating time-series. When the overall system is operat-

ing correctly the metabolism function, f operates on the time-series of all inputs A to

produce the relevant time-series output set B. If the input does not fluctuate from the

evolved basal metabolism, the “design space,” then the repair function essentially pro-

duces more of the same: R: B ® H (A, B). This says that the repair function uses out-

put Y from prior steps to produce a new metabolic map H. The boundary conditions

for the metabolism and repair system are: R(f (a)) = R (b) = f. The repair operation is

thus to stabilize any fluctuations in inputs or metabolism. The repair system, R is an
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Figure 2 Block diagram details of subsystem, SI.
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error correcting mechanism. But when it fails the biological solution to the problem is

to reproduce a new cell and destroy the broken one.

If a critical subsystem Si within the global system ∑ fails, then the cell signals to

begin replication. This affectively solves the open-loop control problem of model drift.

The cell’s genome receives information about the metabolic system, f and builds a

copy of repair system, R. This reproduction mapping relation is given by: b : H(A, B)

® H(B, H(A, B)). This is summarized as:

A
metabolism−−−−−→ B

translation−−−−−→ H(A,B)
transcription−−−−−−→ H(B,H(A,B))

Through metabolism, environmental signals are converted into cellular outputs and

subsystem outputs. These signal the translation apparatus to begin building a new

metabolism system. These “self-referential” systems are known as metabolism-repair

systems (M-R) systems and can be described with category theory.

Among others, real biological examples of the anticipatory systems include the fla-

gella motor expression in E. coli [25] and part of the hepatocytes regulatory network

[26].

M-R Systems and Category Theory

Rosen [3] summarized decades of his research on anticipatory and M-R systems, in his

book: Life Itself, A Comprehensive Inquiry into the Nature, Origin and Fabrication of

Life. There, he used extensively a branch of mathematics known as category theory, a

theory involving mappings of sets and functions. To describe an M-R system we con-

sider a simple model consisting of metabolism and repair “components.” Each Mi and

Ri is a considered as a closed black box. Figure 3A shows a genomic-proteomic-meta-

bolic network from Ideker et al. [27], and Figure 3B shows a simplified M-R system

block diagram. As seen in the block diagram each M-block has associated with it an

R-unit. If for example, subsystem M6 fails then a signal from M5 will activate the R6

unit to begin building a new M6 unit. This scheme will work only if M5 has already

produced a threshold level of R6 components. Otherwise since M5 is linked to M6 the

entire pathway of M6-M5 could fail. Now consider M2, if it fails M4 can produce a

new R2 unit. Notice that M1 is also connected to M4 so there is a complete path from

the input at M1 to the output at M4 via M3, and thus the synthesis of R1 the repair

unit for M1. This dependency relation in these M-R system models is exactly the same

as anticipatory systems described above. M5 is the weaklink in the system. It is not a

repairable component. When it fails, apoptosis will be invoked.

The concept of non-repairable molecular components in cells of course is not new.

Hillenmeyer et al. [28] preformed knockout experiments on yeast, and showed that

many genes, causes little or not phenotypic effects in multiple chemical environments.

Clearly, this indicates massive redundancy in the genomic, and thus the proteomic,

networks. The network diagram in Figure 3A shows some of the potential redundancy.

The nodes in this network are genes. The yellow connections between genes indicate

that protein encoded by one of the genes binds to the second gene (protein ® DNA).

The blue lines indicate a direct protein-protein binding. As shown by Hillenmeyer et

al. [28], the actual number of critical genes in the yeast network is only about 20%.

For M-R systems the equation b: H(A, B) ® H(B, H(A, B)) should not represent

reproduction, per se, but rather re-synthesis, and the diagram in Figure 3B should

Rietman et al. Theoretical Biology and Medical Modelling 2011, 8:19
http://www.tbiomed.com/content/8/1/19

Page 6 of 16



show some metabolic closure. To a first order, life is a complex self-replicating chemi-

cal network enclosed in a self-synthesized membrane that allows specific external

molecular substrates to enter the network and other molecular species to exit the net-

work. To describe this in more detail, consider Figure 3C. Here we see a segment of

the glucose utilization pathway. The diamonds in the flowchart are enzymes or, in

terms of manufacturing systems, they are the small machines that take inputs and pro-

duce outputs. For example HXK processes ATP and Glucose to produce G6P and

ADP. Similarly, PGI accepts G6P and additional ATP to produce Fru6P. Other seg-

ments are similarly interpreted. These processing units in the network are said to be

components of the metabolism network, while all the components in rectangular boxes

are inputs and outputs to these machines.

Adapting some terminology from Letelier et al. [29,30], we will represent the entire

set of processing machines, or enzymes, as the set {M}. While the entire set of inputs

and outputs are represented as {A} and {B} respectively. We thus have the mapping

relationship M : A ® B representing all possible mappings from inputs to outputs.

Figure 3C also shows small network icons connecting to the M, diamonds. Real

enzymes degrade or need to be replaced. In Rosen’s terminology, the broken or fail-

ing M units are repaired. Each Mi has associated with it a repair unit, Ri, so there is

an entire set of repair units, {R}. In biological systems the repair would simply be
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Figure 3 Network and block diagrams. Panel A: Diagram from Ideker et al [27] of a segment of
genomic-proteomic-metabolic network. Panel B: A simplified block diagram of an M-R system. Panel C:
Partial block diagram of glucose metabolism system.
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replacement. This replacement is how biological systems circumvent the open-loop

control found in so many subsystems (or subnetworks). We represent the Ri units

as network icons to remind us that the actual repair or replacement comes about

as a result of a network of subreactions. This entire M and R system comprises

the (M,R) systems analyzed by Rosen [3] and are said to be organizationally

invariant.

In order to understand the function of the repair operation, it is important to realize

that the domain of the repair is the set {B}, so we have F: B ® M(A, B). The repair

comes about at the expense of output from the metabolism and uses metabolism com-

ponents. An example mapping would formally be written: b ↦ F (b) = f, where f Î M

(keeping the terminology of Rosen and Letelier et al.). We now have

A
f−→ B

�−→ M(A,B)

a �→ f (a) = b �→ �(b) = f

or

A
f−→ B

�−→ H(A,B)
β−→ H(B, (H(A,B))

our familiar equation derived from anticipatory systems analysis, and can be shown

as the commutative mapping in Figure 4[3,21,31]. These are all morphisms of Abelian

groups and give us the seemingly infinite regress relation: f (f) = f. This mapping, of

course can also be written as f = f (f) so it is said to be Abelian. But as Cardenas et al.

[32] point out, the equation, from a mathematical perspective seems strange, but from

a biochemistry perspective it can be rewritten as:

molecules (molecules) = molecules,

an obviously more acceptable equation. It says that molecules acting on molecules

produces molecules.

To avoid the infinite regress we need to recall that the mapping M : A ® B repre-

sents all possible mappings from inputs to outputs. We impose restrictions, or bound-

ary conditions. First, notice that the set of metabolites {M}, and repair-operations {F}

need to be restricted.

f (a) = b, f ∈ H(A,B)

�(b) = f , � ∈ H(B,H(A,B))

β(f ) = �, β ∈ H(H(A,B),H(B,H(A, b)))

f 

A B Φ
Figure 4 Commutative mapping relation for M-R systems.
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We impose the additional boundary conditions:

S ⊂ �

H(A,B) ⊂ M(A,B)

Letelier et al. [29] has suggested the further, reasonable, constraint:

|A| ≈ |B| ≈ |M | ≈ |S|. This says that the number of reactants | A |, is about equal to

the number of products | B |, and is about equal to the number of enzymes | M |, and

is about equal to the number of repair operators | S |. When we consider the enzymes

as the processing machines for the metabolism, then we must also recall that enzymes

are produced by the metabolism system. The genome, proteome, metabolome cannot

be separated. It is a complex molecular network, and as we will show below the rela-

tion |A| ≈ |B| ≈ |M| ≈ |S| is not likely valid.

Using the language above, when an enzyme, Mi needs to be repaired, essentially that

means there is insufficient quantity of that molecular species for it to participate as a

catalyst. The insufficient quantity triggers a threshold to induce some gene to begin a

reaction to produce more (a genetic switch in Kauffman’s [5] terminology). This is

obviously all driven by Le Chatelier’s principle: If a chemical systems at equilibrium

experiences a change in concentration, temperature, volume or partial pressure, then

the equilibrium will shift to counterbalance the change [33]. The complex interactome

network is a network of complex irreversible nonequlibrium thermodynamics [34], and

summarized by the very-high level commutative mapping shown in Figure 4.

The above suggests two possible tests of MR-systems theory. First the conditions |A|

≈ |B| ≈ |M | ≈ |S| could be investigated by data-mining. The cardinality of these four

sets should be about equal. Figure 5 shows the protein-protein interaction network for

the yeast, Saccharomyces cerevisiae from Y2H experiments and represents “possible”

biophysically meaningful interactions. Yu et al. [35] estimate about 18,000 ± 4500 bin-

ary protein-protein interactions are possible. Because they did not have all the ORFs

for the screening they obtained 2930 binary interactions consisting of 2018 unique pro-

teins giving an average degree, or node valance, of 1.45, computed as a ratio of interac-

tions/proteins.
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Figure 5 Yeast protein - protein binary interaction network and the degree distribution plot. Panel
A: protein-protein interaction network for the yeast S. cerevisiae. Panel B: the degree distribution plot
showing a power law behavior. Figure reproduced after Yu et al [35].
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This of course is only a sketch of the interactome. The full chemical network needs

to be closed to efficient causation (i.e., that which is a primary source of change [36]).

Further, the full network needs to be at percolation threshold for a self-replicating cat-

alytic network [5,37]. The percolation threshold for a network occurs when the ratio of

edges to vertices E/N = 1, for an average degree of 1. This already spells trouble for

the cardinality conjecture, |A| ≈ |B| ≈ |M| ≈ |S| because the average degree for the

incomplete protein-protein interaction network for S. cerevisiae is 1.45. This suggests

that
|A|
|M| ≈ |B|

|M| ≈ 1.45. If this is correct for the full network, then the mapping rela-

tions A
f−→ B

�−→ H(A,B)
β−→ H(B, (H(A,B)) are not Abelian.

Though the PPI network graph is not directed, we can still conclude that the map-

ping is obviously not Abelian because, as shown in the degree distribution, there are

some very large hubs. This scale-free observation, which is common for many types of

networks, suggests that protein machines are being recruited for more than one meta-

bolic reaction. Biology is a little more complicated than implied by |A| ≈ |B| ≈ |M | ≈

|S| and the system dynamics is more complicated than shown in Figure 4.

A second test of the MR-systems theory would be to assemble an autocatalytic set of

reactions in a simulation not unlike those by Palsson [14]. Here however, the computa-

tional complexity is beyond current systems for anything like a biological cell. But it

may be possible to expand the artificial-chemistries/artificial-life simulations similar to

Fontana [38,39]. In these simulations we might observe if the relations |A| ≈ |B| ≈ |M

| ≈ |S| hold, and that the network graph be scale free. The biological MR-system

shown in Figure 3 is just a small part of the full interactome [40]. Though for some

organisms (e.g. budding yeast) far more details are known than for other organisms,

for the most part the full interactome remains a mystery.

If we let percolation threshold in the network,
|A|
|M| ≈ E

N
≈ 1 be the lower bound on

the connectivity for molecular networks, we can set the upper bound to the percola-

tion threshold for the adjacency matrix, |M|2
2

. Now we have a conjecture that indicates

the existing incompletion of the molecular interaction networks. For yeast the number

of connections would be 60002/2 ≈ 107.

To expand our parallel analysis of factories and biological cells consider that from a

manufacturing perspective, the sets {A} and {B} are the inputs and outputs to the pro-

cessing machines. Both biological and manufacturing systems are materially and ther-

modynamically open. Both are self-regulating, self-repairing dynamical systems. Of

course the cell is also a self-replicating system, and as Drexler [41] pointed out, the

cell is proof of concept for self-replicating molecular-scale machines. Similarly, self-

replicating factories and machines have been described [42].

For cellular systems biology we can view the system as a network of interacting

molecular species, with one of the major time lags being diffusion and Brownian

motion. Processes can take place reasonably rapidly and Le Chatelier’s principle can

drive the system dynamics. On the organism level, diffusion and other transport pro-

cesses can be major time delays, and the dynamics of the organism can be minutes to

days to weeks. Similarly, the time lag in manufacturing is far greater between sensing a

manufacturing processing component failure (mean time to failure) and actual repair
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time (mean time to repair). This gives rise to a hysteresis [43]. In the next section we

examine more closely some manufacturing networks and compare them with biological

networks.

Manufacturome

Above we described anticipatory systems and M-R systems from mostly a biological

perspective, here we will draw further analogies with manufacturing and systems biol-

ogy. Casti [20,21] explored in detail Rosen’s anticipatory systems and MR-systems to

manufacturing.

In the mapping A
f−→ B

�−→ H(A,B)
β−→ H(B, (H(A,B)), the input to the process f is

the set {A} and the output is the set {B}. At the cellular biology scale, the seemingly

infinite recursion of the compact version of this map, f (f) = f, can be explained as the

fact that the genome, proteome, metabolome are all interrelated. Components and

machine parts from the proteome are used in processing the metabolome. Compo-

nents and machine parts from the proteome are used in resynthesis of the proteome

components all the while making use of the metabolome and genome.

In biology the network of interacting proteins, commonly called the interactome,

really consists of enzymes and protein inputs/outputs to the metabolism. If we could

remove from the protein-protein interactome the inputs and outputs leaving a con-

nected graph or a time sequence list of the enzymes that participate in cell cycle and/

or cellular manufacturing, then we would essentially have the following type of linear

network:

W(t1)
P1,2−−→ W(t2)

P2,3−−→ · · · Pn−2,n−1−−−−→ W(t1)
Pn−1,n−−−→ W(tn)

Where W (ti) represents the metabolites or materials to be processed by Pi,j during

the time period between i and j. Biochemically Pi,j would be enzymes. In a manufactur-

ing environment, it would be the processing machine.

Now if we constructed what is called the edge graph for the linear network shown

above, would have:

P1,2 → P2,3 → · · · → Pn−2,n−1 → Pn−1,n

a network of enzymes, or processing machines, as they are used in sequence.

We have been drawing several parallels between manufacturing and systems biology.

Since manufacturing networks are completely known we have an opportunity to

explore algebraic graph theory and test algebraic and group theory hypothesis on man-

ufacturing networks that are not possible yet with incomplete biological interactomes.

Here we want to point out some network similarities. Figure 6 shows the network

graph for DRAM (dynamic random access memory) chip manufacturing [44]. The

graph shows a network of the silicon wafer flow from processing step to processing

step. This is a network graph showing the sequence of processing steps. It is similar to

the above description of the network, Pn-2,n-1 ® Pn-1,n and could be laid out linearly;

but since the same machine is used for similar processes, hubs are created. Obviously

it is a directed graph, information not usually available for interactomes. The figure

also shows the degree distribution for this rather small graph, N = 27.1k -1.2; R2 = 0.94.

Notice there are large hubs; the most prominent being the inspection step. The next

largest steps are expose stepper and develop/bake. These are lithography steps used to
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define the regions for transistor location and interconnection. Like the PPI network in

Figure 5, processing machines are used over again for different steps in the manufac-

turing. This is known as a reentrant manufacturing line [43]. But unlike the interac-

tome multiple connections are shown between nodes. For example node 4, 5, 6, and 7

show multiple connections. These multiple connections represent the time dynamics.

There are 28 nodes in the network but 148 connections with the nodes balanced in in-

and out-degree. The average degree is 5.28 or | A|/| M | ≈ | B |/| M | ≈ 5.28. Keeping

in mind that the full manufacturome represents other processes, using M = 28, the

upper bound for the number of edges is 6272. The conjecture |A| ≈ |B| ≈ |M | ≈ |S| is

valid only when the nodes are replicated the appropriate number of times to capture

the dynamics. We never see this in biological interactomes, or manufacturomes

because of protein/workstation reuse which embeds the larger cardinality in the edge-

count, so the validity of this conjecture remains open, mainly because of incomplete

information at this time.

Figure 7 shows another manufacturing graph (unpublished data from IBM; 2009),

this time for multi-level CMOS integrated circuit manufacturing. The first thing to

notice is that this is a far more complicated graph, than the network graph of Figure 6.

The circuits being manufactured in the Figure 7 manufacturome are more advanced

than the chips produced by the manufacturome of Figure 6 and about 20 times smaller

line width. Like the earlier figure, it is a graph showing the processing flow for the sili-

con wafers from processing step to processing step. As seen in the figure, the degree

distribution follows a power-law, because of modularity reuse of processing tools. It

contains 259 nodes (processing steps) and 628 edges connecting these nodes. The

graph has an average degree of 2.42, and fits the relation N = 101.3k -1.3; R2 = 0.44,

and given M = 259, we get the number of edges, E = 5.366 × 105.

It is also important to realize that this manufacturome is not an autocatalytic set and

the network diagram in Figure 7 is incomplete. We would need to include full factory

inputs, outputs, waste stream, and activities of the marketing department, etc. as nodes

in the manufacturome. Further, to make MR-system diagrams from the given manufac-

turome, we would need to show that each machine/process has associated with it, its

own repair function in the form of in situ signals from the process being analyzed as

X-bar (signal average) and R (signal range) charts [43]. These provide clues to the
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internal dynamics of the manufacturing tool and the process, and allow engineers to

make decisions concerning system repair, replacement, or maintenance.

As a final comparison we look at the number of coding genes in the smallest known

genome to our CMOS fab. The organism in question, Mycoplasma genitalium, con-

tains, 471 coding genes [45]. These breakdown into the following functions: amino

acid synthesis, 1; biosynthesis of cofactors, 5; cell envelope 17; cellular processes, 21;

central intermediary metabolism, 6; energy metabolism, 31; fatty acid and phospholi-

pids metabolism, 6; purines, pyrimidines, nucleosides and nucleotides synthesis, 19;

regulatory functions, 7; replication (DNA degradation, replication, restriction, modifica-

tion, recombination, and repair), 32; transcription, 12; translation, 101; transport and

binding proteins, 34; other categories, 27; unassigned roles, 152. Mushegian and Koo-

nin [46] through comparative bioinformatics deduce that the minimal set is 256 genes.

Later work, by Glass et al. [47] from gene knockout experiments, suggests that 382 are

the minimal number of coding genes required for life. Whatever the correct number, it

is already approximately in the same order of magnitude as the CMOS fab. Which of

0 

1 

2 

3 

4 

5 

6 

0 1 2 3 4 5 

ln
(N

) 

ln(k) 

FAB #49 degree distribution 

ln(N)

Predicted ln(N)

Figure 7 Network graph for CMOS integrated circuit manufacturing (lower right) and
corresponding degree distribution (upper left).

Rietman et al. Theoretical Biology and Medical Modelling 2011, 8:19
http://www.tbiomed.com/content/8/1/19

Page 13 of 16



course does not imply that the fab is a self-replicating system like a cell. With regards

to the “minimal” cell of 256 genes (M = 256), the upper bound for the number of

edges in the full molecular network would have about E = 5.24 × 105.

Conclusions
In summary, the development of main equations for anticipatory systems and metabo-

lism-repair systems are similar for manufacturing systems and cellular biology. The

fact that these two disparate domains are so tightly coupled by similar mathematics

suggests these concepts are indeed at the boundary of living and nonliving. Of course

the coupling could also be a coincidence because of the “unreasonable effectiveness of

mathematics in the natural sciences” [48].

We reviewed the basis for the self-referential relation f = f (f) and found that the

boundary condition |A| ≈ |B| ≈ |M | ≈ |S| can’t be valid, but is likely only a lower

bound. We suggest that the upper bound is the percolation threshold for the adjacency

matrix of the molecular network, and compute these lower and upper bounds for S.

cerevisiae, M. genitalium and two integrated circuit manufacturing lines. Further the

relation f = f (f) is not likely Abelian so theoretical understanding of metabolic closure

of living cells remains and open question.
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