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Abstract

We review grounding issues that influence the scientific usefulness of any biomedical
multiscale model (MSM). Groundings are the collection of units, dimensions, and/or
objects to which a variable or model constituent refers. To date, models that
primarily use continuous mathematics rely heavily on absolute grounding, whereas
those that primarily use discrete software paradigms (e.g., object-oriented, agent-
based, actor) typically employ relational grounding. We review grounding issues and
identify strategies to address them. We maintain that grounding issues should be
addressed at the start of any MSM project and should be reevaluated throughout
the model development process. We make the following points. Grounding
decisions influence model flexibility, adaptability, and thus reusability. Grounding
choices should be influenced by measures, uncertainty, system information, and the
nature of available validation data. Absolute grounding complicates the process of
combining models to form larger models unless all are grounded absolutely.
Relational grounding facilitates referent knowledge embodiment within
computational mechanisms but requires separate model-to-referent mappings.
Absolute grounding can simplify integration by forcing common units and, hence, a
common integration target, but context change may require model reengineering.
Relational grounding enables synthesis of large, composite (multi-module) models
that can be robust to context changes. Because biological components have varying
degrees of autonomy, corresponding components in MSMs need to do the same.
Relational grounding facilitates achieving such autonomy. Biomimetic analogues
designed to facilitate translational research and development must have long
lifecycles. Exploring mechanisms of normal-to-disease transition requires model
components that are grounded relationally. Multi-paradigm modeling requires both
hyperspatial and relational grounding.

Review
Needed: models that bridge multiple scales of organization

A research goal (Goal 1) for computational biology, translational research, quantitative

pharmacology, and other biomedical domains involves discovering and validating cau-

sal linkages between components within a biological system in both normal and patho-

logic settings. The translational goal (Goal 2) is to use that knowledge to improve

existing and discover new therapeutic interventions. Vital to each is the formulation

and implementation of computational models that, like wet-lab models, are (Goal 3)

suitable objects of experimentation and represent domains in which confidence in

experimental predictions is sufficient for decision making under specifiable conditions.
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These models, much like the systems they aim to study, must bridge multiple scales of

organization, and therefore require capabilities that represent (and account for) the

many uncertainties that arise in the multiscale model setting. Just as mechanistic

hypotheses and insight evolve with the persistent accumulation of new wet-lab knowl-

edge, mechanistic representations within the software constructs comprising computa-

tional models must be capable of evolving and accommodating concurrently in order

to be scientifically useful. Such changes cannot be smoothly and easily achieved with-

out prior consideration of model grounding issues at all model development stages.

The purpose of this review is to provide a critical assessment of emerging technology

and present arguments and examples in support of the preceding statement.

A glossary is provided. When glossary terms are first used in the text, they are foot-

noted and defined under Endnotes. The units, dimensions, and/or objects to which a

variable or model constituent refers establish groundings. Each term, variable, or object

in a model has a meaning established by either an external context (foundational) or

by other terms in the model (internal consistency). Absolute groundinga is most preva-

lent in the literature; its variables, parameters, and input-output (I/O) are in real-world

units like seconds and micrograms. Each term is foundational and maps to a tacit

thing with an established, real-world meaning. By contrast, relational groundingb repre-

sents variables, parameters, and I/O in units defined by other system components.

Terms are defined in terms of each other in an internally consistent way, but they may

also have meanings that are unrelated to real-world things like distance or time.

Within multiscale models, components can be grounded differently. At one extreme,

all components are grounded absolutely. The dominant perspective of such a model

may be physical laws, supported by being on the right side of the Figure 1 scales. At

the other extreme, all components use relational grounding. The dominant perspective

Figure 1 Characteristics of scientific problem and system phenotype.
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may be observational-level mechanisms and interactions of living components, moti-

vated by being toward the left side of Figure 1 scales. It is noteworthy that within an

epithelial cell culture model, groundings between cells, their environment, and each

cell’s constituents are relational.

In this article, we present and discuss the above issues with a focus on grounding

decisions made while carrying out multilevel, multi-attribute, multiscale modeling and

simulation (M&S). Grounding issues do not typically pose problems when a model is

narrowly focused on a single aspectc of a system (e.g., a pharmacokinetic or gene net-

work model). However, when a model aims to describe multiple system aspects (i.e.,

different phenotypic attributes), including those that cross scale, grounding problems

begin to emerge. Below, we argue that a spectrum of multiscale model classes is

needed to understand and appreciate groundings and their consequences. Those mod-

els that rely exclusively on absolute grounding will occupy one extreme, while those

that rely on relational grounding occupy another. With rare exceptions, all current

computational biomedical models use absolute grounding. We suggest that developing

and making available model classes that use relational grounding is essential for

achieving the three goals in the first paragraph.

Grounding decisions influence model flexibility, adaptability, and thus reusability

Inductive mathematical models are typically grounded to metric spaces and real world

units. Such grounding provides simple, interpretive mappings between output, para-

meter values, and referentd data. Absolute groundinge creates issues that must be

addressed each time one needs to expand the model to include additional phenomena,

when combining models to form a larger system, or when model context changes.

Adding a term to an equation, for example, requires defining its variables and premises

to be quantitatively commensurate with everything else in the model. Such expansions

can be challenging [1] and even infeasible when knowledge is limited, uncertainty is

high, and mechanisms are mostly hypothetical. Such circumstances occur when the

characteristics of a problem place it near the center or on the left side of one or more

Figure 1 scales. A model composed of components all grounded absolutely or to the

same metric spaces–a physiologically-based pharmacokinetic model, for example–has

limited reusability when experimental conditions are different or when an assumption

made in the original formulation of the model is brought into question. This issue is

expanded upon in the context of the first of two main Examples (Example One) pre-

sented below. Reusability is hindered in part because a model grounded absolutely con-

flates two different models (the physiologically-based mechanistic model and the in

silico-to-referent mapping model), which have different uses.

By switching to dimensionless, relational grounding (e.g., see [2]), flexibility and reu-

sability are enhanced. With equation-based models, dimensionless grounding is

achieved by replacing a dimensioned variable with itself multiplied by a constant hav-

ing the reciprocal of that dimension. This transformation creates a new variable that is

purely relational. It relies on the constant part of a particular organization. However,

when dealing with living, changing systems, identifying a constant part with confidence

can itself be challenging.

The components and processes in discrete event, object and agent oriented, biomi-

meticf analoguesg (discussed in detail in [3]), which are created using object-oriented
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(OO) programming methods, need not have assigned units. See [4-8] for examples in

which each constituent and each component is grounded to a proper subset of other

modules and components. Cellular automata, agent-based modelsh (ABM), and actor

models [9,10] often rely on relational grounding. Relational grounding enables synthe-

sizing flexible, easily adapted, extensible, hierarchical analogues of the systems they

mimic.

Measures, uncertainty, and system information influence grounding choices

The scientific circumstances of any biomedical research problem can be characterized

by indicating an approximate location on the three scales in Figure 1. Most engineer-

ing (and many molecular and biophysical) problems are characterized by being on the

right side of all three scales. From the perspective of cells, tissues, and organisms, a

computer chip design problem would be on the far right side of all scales. Most bio-

medical research problems (i.e., those that deal with systems having living components)

would be characterized as being somewhere between the center and the left side of all

scales. Being on the right favors reliance on inductive reasoning and developing induc-

tive models that can be precise, accurate, and predictive: the generators of underlying

phenomena are well understood, and precise knowledge about mechanisms is available

at all levels of granularity. Furthermore, it is straightforward to obtain ample quantita-

tive data against which to validate or falsify the model. As one moves to the left (i.e.,

with living systems), uncertainty increases. Conceptual mechanisms are less validated

(and therefore less trustworthy) and more hypothetical. Reliance on inductivei models

requires accumulating networked assumptions, some of which may be abiotic. Those

assumptions are woven in by reliance on metric and absolute grounding. Difficulties in

falsifying mechanistic hypotheses increase dramatically in moving from right to left in

part because directly applicable, reliable, quantitative validation (and falsification) data

are lacking or scarce. This point is brought into focus in the second example (Example

Two), presented below.

Prior to the advent of OO programming, there was no option but to rely on induc-

tive models and metric grounding even though the objects of study were unique and

particular. In moving from right to left, one must rely increasingly on abductivej rea-

soning. Consequently, new model classes that support abductive reasoning are needed.

The focus should be more on discovering and challenging plausible mechanisms, and

less on making precise predictions. Flexible exploration of the space of plausible

mechanisms requires models that use relational grounding.

Further discussion will benefit from specific examples. In the next two sections we

present and discuss two multiscale modeling examples. We then return to the discus-

sion to address knowledge embodiment; combining models to form larger models; the

multi-model nature of models grounded absolutely; multi-paradigm modeling; facilitat-

ing translational research; modeling normal-to-disease transition; providing component

autonomy; and synthesis of large composite, multi-module, models. The two examples

focus on two very different types of multiscale models. Example One illustrates some

of the difficulties in reusing and combining absolutely-grounded, physiologically-based,

pharmacokinetic (PBPK) models in a cross-domain scenario to make a more biomedi-

cally useful, composite, multiscale model. We show how and why integrating four

separately developed, absolutely-grounded, models [11-14] is problematic. We argue
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that, by integrating relational analogues of the four cross-domain models, a mechanis-

tic, PBPK and pharmacodynamic (PD) model can be developed and validated more

easily. Example Two focuses on a well-developed hybrid model (ordinary differential

equation (ODE) and ABM) of immune cell trafficking behaviors in the context of

response to M. tuberculosis [15]. The model enables exploring the linkage between

grounding decisions, qualities and their relations, and the availability of data against

which the model or a component will be validated. Electing absolute grounding pre-

supposes the availability of specific quantitative data, against which to validate, which

can be difficult to come by on the left side of Figure 1. Electing relational grounding

presupposes the availability of at least qualitative validation data, which is more often

available of the left side of Figure 1.

Example One: Cross-domain integration of absolutely grounded models in quantitative

pharmacology

We present an example to illustrate some of the difficulties in reusing models com-

prised of sets of (differential) equations that are grounded absolutely. We focus on

PBPK models in a cross-domain scenario where the models are grounded absolutely.

Using relational grounding does not eliminate these difficulties, but it does mitigate

them. For the sake of the discussion, suppose one were to develop a detailed mechanis-

tic, PBPK and PD model to predict the disposition and dynamics of a novel, targeted,

monoclonal antibody linked to a toxin, for treatment of a localized malignancy. Sup-

pose further that the monoclonal antibody targets surface antigens on developing

malignant leucocytes (for example, rituximab), and as such locally concentrates the

toxin (e.g., 131I), which in turn potentiates its therapeutic effects.

The problem at hand is complex and involves several modeling perspectives: a) phar-

macokinetic considerations and disposition of the toxin-antibody complex, which gen-

erally follows antibody kinetics, b) pharmacodynamics of the antibody, with or without

the toxin, c) pharmacokinetics and disposition of the released toxin, which generally

follows simpler compartmental kinetics, and d) pharmacodynamics and toxicodynamics

of the toxin. Because certain measurements, for instance antibody tissue distribution

data, will be difficult to obtain in human subjects, it is expected that extrapolation or

scaling of results from animal studies will be needed.

One option is to develop empiric models to describe the kinetics and dynamics of

the novel drug in humans. Another is to develop a multi-level mechanistic model from

scratch using data from extensive human studies. A more attractive option is this

knowledge-based approach: integrate existing, validated models from the literature to

leverage prior efforts and knowledge. A handful of detailed models have been reported

that, together, cover each part of the modeling problem. Here are four.

A: Garg and Balthasar [11] present a detailed PBPK model to predict immunoglobu-

lin-gamma (IgG) kinetics in mice in general, where the influence of neonatal Fc-recep-

tor on IgG clearance and disposition is specifically modeled.

B: Merrill et al. [12] present a PBPK Model for radioactive iodide and perchlorate

kinetics and perchlorate-induced inhibition of iodide uptake in humans.

C: Scheidhauer et al. [13] present a biodistribution and kinetic model of 131I-labelled

anti-CD20 monoclonal antibody IDEC-C2B8 (rituximab) using results from a human

dosimetric study.
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D: Roberson et al. [14] present a pharmacodynamic model of 131I- tositumomab

radioimmunotherapy in treating refractory non-Hodgkin’s lymphoma; the model

includes both an antibody antitumor response and a radiation response.

An ideal strategy for achieving the above task is to integrate the four detailed models

to form a mechanistic, PBPK and PD model of the novel therapeutic. Here, we discuss

some of the barriers, with a focus on consequences of absolute grounding. All four

models are grounded absolutely.

Unit of measurement in Example One

When there is a lack of direct measurement unit translation between different models,

significant barriers arise when one attempts integration. Case in point: models B, C,

and D all describe the amount of (radioactive) iodine in a human body. Model B pre-

sents iodine dose in milligram and concentration in nanogram/liter; model C presents

administered iodine dose in radioactivity units megabecquerel (one million counts per

second) and amount of radioactive iodine distributed in regions of interest per injected

dose in units of milligray/megabecquerel; model D presents administered dose in

microcurie and mean absorbed radiation in gray (or joule per kilogram). Because radio-

active iodine is continuously decaying, there is no simple formula to convert mass of

iodine at some time (which presents a mixture of 131I and non-radioactive iodine) to

its respective radioactivity. Also, because the biological effect of radiation dose is mea-

sured by radioactivity divided by tissue mass, there is no direct map from tissue levels

(mass of drug per tissue volume) to absorbed radiation dose (energy per tissue mass)

of the tissue. Hence, the kinetics of iodine from model B cannot directly inform the

dynamics as presented in models C and D.

The above problem can be resolved using relational grounding methods with a series

of mapping models to translate to physical units. Start by representing matter in frac-

tion of administered mass. In the kinetics context, map to concentration using the tis-

sue volume. In the dynamics context, map to radioactivity using a probabilistic decay

model with respect to the decay half-life, which in turn maps to absorbed dose using

tissue mass.

Adding a compartment in Example One

The goal of developing model A was to predict distribution of a generic monoclonal

antibody, and the thyroid gland was not of particular interest, therefore, the thyroid

gland was conflated into Other Tissues. Because the primary toxicity of radioactive

iodine is destruction of thyroid tissue, the thyroid gland was explicitly represented in

model B. On the other hand, model A represented lymph flow, whereas model B did

not. Despite the overwhelming similarity of model structures, integrating them is diffi-

cult because there is no straightforward way to “insert” a new compartment or flow

path. Doing so would require decomposing Other Tissues into, for example, Thyroid

and [Other Tissues - Thyroid]. The new components would need to be parameterized

and the resulting model would then need to be refitted. Thus, the parameterized PBPK

model cannot be reused easily. In models C and D, subjects received either excessive

nonradioactive iodine or perchlorate to block thyroid uptake of radioactive iodine.

However, the toxicity of 131I was not modeled. Linking model B with models C and D

would provide toxicokinetic and toxicodynamic insights. However, again, because in

models C and D the distribution to the thyroid was not represented, integrating
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models B, C and D would require extensive model re-engineering and would require

extracting additional, enabling measures from the literature.

Had model A combined relational grounding with modular components, it would be

easier to add a new component or replace one component with two. There are several

options for simulating continuous flow without specifying an absolute volume. For

example, drug flow to each compartment can be simulated discretely using probabilis-

tic functions: the drug has certain probability to reach the target compartment each

simulation cycle. When needed, one could use a continual stream of discrete amounts.

It would then be straightforward to insert an additional tissue component without

reengineering the rest of the model, although it would still require reparameterization.

From nested, conceptual model to flattened equation model in Example One

Figure 1 of [11] provides a way to visualize the entire model in the context of ground-

ing. It is replicated in a slightly different form in Additional file 1, Fig. S1. Visualizing

the model as a graph allows us to collapse and expand some sections of the graph,

explicitly representing the hierarchical structure in the whole, prosaic, model and the

non-hierarchical structure of its mathematical implementation. The tissue nodes in

Additional file 1, Fig. S1 expand into sub-models that show the compartments within

each tissue, vascular, endosomal, and interstitial, shown in Additional file 2, Fig. S2.

Similarly, Additional file 3, Fig. S3 expands the endosomal compartment to reveal the

relationship between the antibody and its receptor, the bound fraction derivation in

the paper. The series of figures is intended to provide insight into the modeling pro-

cess, wherein a prosaic model with some hierarchical depth is flattened into an abiotic,

system of equations that is grounded absolutely.

Adding another antibody (or molecule) to model A of Example One

If disposition of the two molecules is totally independent, then these same equations

can be used. Some parameter and variable value estimates can be obtained from litera-

ture. Known and unknown parameter and variable values may be different from those

of model A’s IgG, which means the fitting and prediction (experiment) structure will

be different. In general, however, the equations will have the same form and the com-

posite model simply has twice the number of equations, variables, parameters, etc.

Such a composite might be largely uninteresting. If, on the other hand, the new mole-

cule is dependent on some components of the IgG model, then integration becomes

more difficult if not problematic. For example, perhaps the new molecule also binds to

the neonatal Fc-receptor. In that case, adding the new equations should change many

of the values of the parameters and variables used in these equations and require either

new equations relating the new molecule to IgG or new terms in some of the

equations.

Adding to model A another receptor that also binds IgG in Example One

New terms will need to be added to the equations governing the tissue components in

which cells express the new receptor. Equations governing the tissues components

where the new receptor is not expressed will stay the same. New derivations may be

necessary for the relational fraction [un]bound. The resulting composite model would

then need to be refit to a larger and perhaps more complex data set.

Scaling between species in Example One

Consider scaling antibody clearance in mice in model A to enable human prediction.

Model A is grounded absolutely on both concentration (mass and volume) and time,
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and hence, scaling the mice clearance values (in ml/day/kg) to human clearance values

would require applying mass, volume, and time scaling factors to all parameters simul-

taneously, with each of the scaling factors being imprecise and uncertain. When the

scaled, parameterized model gives predictions that deviate significantly from observed

values, there is no way to ascertain which scaling factor(s) and/or which scaled para-

meter(s) is problematic.

The relational grounding approach offers a somewhat simplified alternative. The

mass parameter scaling and volume parameter scaling can be done separately from the

rest of the model and can be validated independently. Time scaling is more compli-

cated but it can be accomplished by finding an appropriate time-scaling factor for all

probability parameters. Each of the scaling factors and/or parameters can be adjusted

individually to obtain best similarity. In time, automated scaling, which is feasible with

models grounded relationally, will expedite the process.

Representing uncertainties in Example One

In equation-based models that are grounded absolutely, variables and parameters are

often expressed as precise mathematical values, although there are usually significant

uncertainties associated with them. Examples of which are the so-called physiological

parameters such as (average) blood flow values in a typical PBPK model. Representing

uncertainty within a system of differential equations grounded absolutely is mathemati-

cally complex (indeed, entire fields of mathematics have been developed to deal with

these issues more holistically). Integrating models from different contexts can require

adjustment of parameter values, and that in turn requires that the whole model be

refitted. In contrast, in a model using relational grounding, probabilistic functions

represent inherent uncertainties conveniently. Further, the causes for being unable to

adequately match (or later falsify) a relationally grounded model are made more

obvious by the explicit inclusion of probabilistic functions.

An important use when developing a detailed, mechanistic, PBPK/PD model is to

assist in the design of first-in-human clinical trials of the novel therapeutics. Another

is to predict the clinical disposition and response in patients who have not received

the therapeutic. In the above examples, two targeted radioimmunotherapies (131I tosi-

tumomab and 90Y ibritumomab tiuxetan) were marketed, and both required individual,

empiric dosimetric studies before the therapeutic regimen could be given. It can be

argued that, by integrating relational analogues of the four cross-domain models, a

mechanistic PBPK/PD model can be developed and validated more easily. The resul-

tant model would likely reduce–possibly eliminate–the need for the dosimetric study.

Take-home message from Example One

Analysis of the example models, particularly Garg and Balthasar [11], in the context of

model grounding is intended to shed light on the impact grounding decisions have for

the resulting model and its uses. It should be clear that ideal use cases for logically

deep, relational, models may be quite different from use cases for flattened, absolutely-

grounded, models. The cited papers give clear evidence for the use of this example in

quantitative prediction and evaluation. The analysis above provides justification for our

claim that flattened, absolutely-grounded, models are not ideal for use cases requiring

progressive [iterative] evolution and long lifetime models. Specifically, it would be sub-

optimal to rely on these models for the exploration of a wide variety of different

experimental contexts because it would be difficult to include additional
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compartments, antibodies, or receptors, to translate to other species, or to represent

composite uncertainties.

Example Two: Immune cell behaviors in the context of response to M. tuberculosis

Example Two is the model discussed in Marino et al. [15]. For reader convenience, we

cite three closely related papers [16-18] that use essentially the same model.

Example Two was selected because it is a hybrid model. We describe its unique

grounding and its impact on the validation of such models. The example serves to

illustrate the distinction between absolute, relational, and metric grounding.

Marino et al. [15] examine the roles of immune effector cell activation and migration

in the context of response to M. tuberculosis. The model attempts to understand the

spatiotemporal dynamics of granuloma formulation via linkage, in a hybrid model,

combining a complex system of ODEs (grounded absolutely) to explain immune cell

dynamics in lymph nodes (LN-ODE), and an agent-based model (ABM) of granuloma

formation in pulmonary tissue. The biological process is complex and involves multiple

cell types acting in highly variable spatial domains and across many timescales. The

composite model is intended to examine the roles of immune effector cell activation

and migration in the context of response to M. tuberculosis, which usually entails a

granulomatous inflammatory response by the immune system. The goal is to under-

stand how the systems influence each other and give rise to their systemic behavior by

explicitly modeling the feedback cycle between the lymphoid and pulmonary

components.

Linking differently grounded sub-models in Example Two

Of critical importance is the notion that to approximate cross-compartmental dynamics

(i.e., to account for immune trafficking between the lymph node and the lung), the two

components, each grounded differently, must be linked via concrete mappings in order

to produce behavior comparable to that from wet-lab models. So doing requires meth-

ods for smoothing discrete outputs from the ABM and discretizing the smooth outputs

from the ODE. In the [15] hybrid, these mappings involve (in brief)

i) clustering of the APC inputs to LN-ODE into pulses and

ii) discretization of the T-cell fluxes from the LN-ODE.

These intra-component mappings comprise a fundamental part of the grounding of

any model.

The output from the ODE model subsequently fed in to the ABM consists of real-

valued units, i.e., fluxes, measured in number of effector immune cells arriving to the

lung compartment of the model, for each time step of the ODE integrator. These

fluxes are computed based on grounding or parameterization comprised of a set of

rate constants describing immune dynamics on various scales, ranging from death and

proliferation rates to migration rates. The fluxes are derived from continuous equations

(ODEs), but because the ABM is grounded to discrete sets, the precise continuous flux

output values are mapped into clusters (in this case, T-cell subsets) for input to the

ABM. These discrete “bins” or clusters are distinct, if subtle, qualities for the ABM

component. The qualities distinguished are integer increments in the counts for each

T cell in the queue and its route into the ABM by a chosen vascular source. Viewing

Hunt et al. Theoretical Biology and Medical Modelling 2011, 8:35
http://www.tbiomed.com/content/8/1/35

Page 9 of 22



the discretization in this way may not, at first, appear to add anything to our under-

standing of grounding and validation of simulations. However, this perspective illus-

trates an oft-hidden assumption/process that takes place in all biological M&S

research. All continuous T cell output values are qualitatively labeled as being a mem-

ber of one of the clusters (integers), and these clusters form the basis for all the dis-

crete computation in the ABM. (Note the inverse of such clustering is often called

“soft computing,” e.g. fuzzy logic, where naturally discrete qualities are coerced into a

smooth quantified spectrum.)

A consequence of the preceding situation is that, in effect, the agent-based model

depends intricately on the assumptions made in the ODE model and the discretization

of its outputs. Conversely, output (in discrete numbers of cells) from the agent-based

lung component needs to respect the continuity of the ODEs describing the lymph

node component, which constrains solution “spans” of the ODE system to the time

step chosen for the agent-based simulation; in essence, the two components of the

hybrid model must be linked by a common timescale, the choice of which likely has

important implications for the results obtained.

Example Two illustrates how groundings influence sensitivity analyses

Given the inherent complexity of the mechanisms being modeled by the ODEs, the

above issues present difficulties with model sensitivity analysis. In order to make the

ABM a steadily more realistic description of its referent lung tissue, the other compo-

nents (perhaps just the LN-ODE) must be similar enough to their corresponding refer-

ents (e.g. the lymph node) to provide an adequate simulated environment for

validating or falsifying the ABM mechanisms. The variation in the behavior of the

ODE, via the discretization and smoothing couplings between them, provides context,

including bias and constraint, to the ABM mechanisms, which is especially important

because the two are linked in an iterative (positive, negative, or stable) feedback cycle.

This means that any subsequent changes in the ABM based on the falsification of a

mechanism, the incorporation of new hypotheses or domain knowledge, etc. will likely

require re-parameterization or reformulation of the ODE, which may undermine the

extensive sensitivity analysis already performed.

To overcome these difficulties, an alternative formulation might be to develop rela-

tionally-grounded models of both compartments and link them together as a first step,

at least until some degree of model validation is achieved. Employing a relational

design from the outset facilitates individual component replacement, limiting any one

component formulation solely to its coupling with the others. Any component can be

replaced at will as long as the minimal requirement of matching I/O with its neighbors

is met. This contrasts with an absolutely-grounded model where it is often very diffi-

cult to replace only a single component. After a model using relational grounding has

undergone degrees of mechanistic validation, some components could then be replaced

by absolutely grounded components to see if the mechanistic insight gained from the

relational model translates, i.e. those components for which there exists little or no

quantitative data against which to validate. In general, starting with a relational model

allows us to progressively iterate from qualitative to quantitative validation. With

respect to this specific example, replacing the LN-ODE with an articulated, relational

model may have the effect of providing an efficient path, through iterative refinement,

to quantitative validation of the hybrid model.

Hunt et al. Theoretical Biology and Medical Modelling 2011, 8:35
http://www.tbiomed.com/content/8/1/35

Page 10 of 22



Qualitative and quantitative validation issues in Example Two

In a wider context, simulation validation is based on its similarity to a referent system.

Similarity can be defined on a spectrum, ranging from “qualitative” to “quantitative.”

With qualitative similarity the attributes of a system (simulation or referent) are funda-

mentally distinct. Objects will either possess some quality, or they will not. Attributes

of the simulation and its referent system are considered similar if they have (almost)

the same qualities. In [15], clearance, containment, and dissemination of bacterial

objects serve as qualitative attributes that can be ascribed to these experimental sys-

tems, and by which any two systems can be compared. With “quantitative” similarity,

by contrast, attributes are categorically the same but vary by magnitude and can be

compared by some ordering relation (e.g. less than or greater than). In [15], quantita-

tive measures include (among others) cell number; in a given quantitative scenario, a

central question concerns the assessment of similarity between the number of cells of

a given type produced by a simulation with the number inferred by some experimental

assay of the referent system. Despite the spectrum used to define “similarity,” it is

always the case that a qualitative description is a prerequisite for quantitative descrip-

tions, in the sense that any quantities defined must relate to one or more qualities. In

the [15] LN-ODE, the rate bins and types of T cells recruited to the lung component

of the model are qualities within which quantities are defined. Hence, all quantitative

models are, in some sense, both qualitative and quantitative. In general, quantitative

validation will occur only in the context constrained by the available qualities, explain-

ing why qualitative validation must precede quantitative validation. For example, in

[15], the LN-ODE is only qualitatively similar to its referent lymph node in the vari-

ables the authors chose to model. Obviously, there are many other attributes of a real

lymph node that this system of ODEs does not capture and, likewise, there are many

attributes (computational, algorithmic) that are superfluous to the biological mechan-

isms of, e.g., lymph nodes.

As such, the issue of validation (or lack thereof) should act as an important determi-

nant of what type of model (and therefore, what type of grounding) to employ to

model the system of interest. Quantitative descriptions should provide quantitative pre-

dictions and, hence, allow quantitative falsification. Further, models grounded abso-

lutely make predictions and allow falsification directly in the units to which they are

grounded. Importantly, because their (fewer) attributes are more easily quantified,

those predictions will be precise and precisely falsifiable if (and only if) there is quanti-

tative data from the referent with which to compare those predictions. In contrast,

qualitative descriptions enable merely qualitative prediction and falsification. Relational

models, each component defined only in terms of its neighboring components, are

more amenable to qualitative descriptions, expressing qualities not necessarily compar-

able by order or magnitude. Relational models are capable of expressing quantitative

predictions and can be quantitatively falsified. However, such quantitative prediction is

more complex with relational models because of the logical depth of such models and

the high variation expressible within them.

Qualitative and quantitative prediction issues in Example Two

Marino et al. [15] comprises a model meant to make qualitative, mechanistic predic-

tions of interest to biologists, but the choice of employing an absolutely-grounded

model component suggests that quantitative predictions are expected from their overall
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model. However, the authors explicitly concede that the LN-ODE model is difficult to

quantitatively validate. This situation questions the usefulness of a quantitative model

that is amenable to only qualitative validation and makes only qualitative predictions.

If only qualitative prediction and validation are possible, is the development of a quan-

titative component worthwhile? We suggest the answer might be yes, if there is a clear

path from the qualitative predictions to quantitative data against which to falsify those

predictions. Having quantitative data that agrees with quantitative predictions provides

a degree of validation, but no new knowledge is created. Quantitative falsification is

more useful because we learn how and where the knowledge instantiated in the model

is inaccurate.

Guideline and recommendation based on Example Two

As a general guideline, when quantitative validation data are not available, it is most

reasonable to first build a qualitative, relational model, and then qualitatively validate

and make predictions that will help design experiments on the referent system (i.e.,

perform wet-lab experiments), the results of which may then be used to refine the qua-

lities and relations in the model. This process should be iterated until quantitative data

is available to help falsify the model and make precise predictions. In doing so, we are

moving from left to right in Figure 1. Only at that point does it make good sense to

develop a quantitative, absolutely-grounded model.

With an eye to further avenues of research, we note that the overarching biological

mechanisms explored by this hybrid model (immune cell priming within the lymph

node, immune-cell trafficking between the lung and lymph node, and granulomatous

containment of bacteria within the lung) are themselves composite processes whose

subcomponents (e.g., at the proteomic or genetic level) encode complex, multiscale

processes. Any extension of this hybrid model to account for further complexity (i.e.,

more complete mechanistic insight) will be unguided without quantitative validation

for, at least, the LN-ODE component. Similarly, further development of the ABM com-

ponent would be unguided were there no qualitative validation. However, Marino et al.

[15] do specify qualitative validation from the literature and qualities derived from

wet-lab experiments. Only after a significant degree of validation, both quantitative and

qualitative, is achieved, should further levels of complexity be explored.

Knowledge embodiment requires models (synthetick analogues) that are relational

Grounding all the elements of a model absolutely, to real, physical units like meters,

seconds, and μg/ml is the standard method for hooking the semantics of a computa-

tional model to the conceptual models on which biomedical scientists rely. Such

grounding is common because it makes the computation purely mechanical, a black

box function that “mindlessly” takes input and transforms it into output. Humans

interpreting the I/O of the black box do all the semantic grounding for such a model

manually, outside the computational framework. Hence, neither knowledge nor seman-

tics, is embedded in the model. Various computational methods have been invented to

improve that reality and to allow embedding knowledge in the machine. Expert sys-

tems isolate the semantic grounding at the initial conditions and apply a language

grammar to mimic logical reasoning: it is the most obvious example of embedding

knowledge into a computation. However, relational databases, cellular automata, artifi-

cial neural networks, object orientation, agents, actors, etc. do much the same, albeit
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for different types of knowledge. These methods represent an implicit embedding of

knowledge by mapping computational mechanisms to the hypothesized referent

mechanisms.

To illustrate, consider a finite volume method simulation of a fluid that consists of

discretized blocks and equations that determine the flux for each block. The equations

inside the blocks (black boxes) map to the high-level flow dynamics of the referent

fluid. There is no mapping from the model to the molecular interactions that compose

the higher-level fluid dynamics. The simulation implicitly contains the conservation of

mass and the spatial relations that allow it to stand in for the referent and behave simi-

larly, as specified by the PDEs that describe the high level behavior of both systems.

Each volume block is grounded to those around it. This example of implicit knowledge

is trivial, however, because the I/O for each volume is grounded absolutely to the same

units. That absolute grounding makes the relative grounding of a volume with its

neighbors invisible to the users. In order to progressively embed more and more

knowledge into a computation, such relative grounding must be made explicit.

A much less trivial, implicit knowledge embodiment can be seen in models pro-

grammed using OO programming (OOP) languages. Class, instance, property, and

method names, along with their respective data types, provide semantic groundings.

OOP mechanisms are more obviously grounded relationally because any two interact-

ing objects may only need to understand each other’s I/O. Often objects’ I/O are bur-

ied deep inside the code and the user never sees that I/O. It is this potential for

relational grounding that gives OOP its advantage in complex software engineering

and in building simulations of complex systems. For knowledge embedded in a biomi-

metic, computational system to be useful (especially in a social context like shared

model usage, validation, and falsification), embedded knowledge must be visible to the

user (which is not the case now). Because the focus is science, the user must be aware

of the knowledge and must able to discuss it, rely on it, dispute it, and falsify it, all

while understanding the domain over which that knowledge, and hence that model, is

applicable.

Relational grounding facilitates referent knowledge embodiment within computational

mechanisms

Significant technological progress has been made on methods for embedding knowl-

edge in software, which is required for achieving our stated goals. The dominant

method for explicitly embedding knowledge inside a model is with a markup language

(XML), a set of core terms and constraints on how they can be used (XML Schema),

and a set of related domain specific terms (ontology). They exist because the most

common languages used to implement computational mechanisms are universal in

what they can express, so called Turing Complete languages. Any practical procedure

one can envision is representable in these languages, which makes it difficult to know

what a computational mechanism is doing without very close examination. Computa-

tional biology markup languages standardize relationships between the terms. Any

computation that adheres to the standard can be trusted to, at least, preserve those ter-

minological relationships. This stability facilitates integration, translation, and valida-

tion by allowing domain experts (scientists) to examine the mechanisms to a certain

extent, one that stops short of forcing them to also be competent computer
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programmers. Hence, although implicit referent knowledge embodiment within com-

putational mechanisms can, to a limited extent, be accomplished without explicit

ontologies, such embodiment will see limited exposure because it prevents specializa-

tion into the technical programming versus domain expertise.

The ability for a domain expert to examine a model without needing computational

expertise is as critical to the progressive advancement of multiscale simulation in biol-

ogy as it was for biomedical scientists to design and perform experiments without

becoming experts in laboratory equipment design. Progressing from custom-built

experimental apparatus (still a common practice fifty years ago) to standardized lab

products allowed scientists to compress inherently complicated methods for subsump-

tion by engineering, production, and validation processes. Doing so freed scientists to

build their experiments atop complicated lab equipment (e.g., a cell sorter, a confocal

microscope, monoclonal antibodies, transfection reagents, automated DNA sequencer)

without needing intricate knowledge of the details of equipment processes that pro-

duced the final, measured, experiment output. The same progression must occur

within computation, and in particular, simulation using modular, multi-attribute, hier-

archical, and heterogeneous analogues of biological systems. The subsumption of cus-

tom software (the current state of MSM) by engineering production moves knowledge

from the mind of the experimenters into the domain of in silico apparatus. Subse-

quently, scientists will be enabled to design their work around the new technology and

its relationship to their system of study.

Absolute grounding complicates combining models or modules to form larger models

unless all are also grounded absolutely

The component and model integration issues identified above balloon into important

choices that must be made by the modeler, in the context of the technical and mathe-

matical detail being considered. Bassingthwaighte et al. [19] present and discuss exam-

ples of these issues. To illustrate, consider a typical ordinary differential equation

(ODE), defined as:

dx/dt = f(x, u, t), x(t0) = x0; y = g(x, u, t), where,

t is a Real number such that t ≥ t0;

x(t) is an n dimensional real tuple representing the state of the system;

u(t) is an m dimensional real tuple representing the system input;

y(t) is an l dimensional real output;

x0 is an n dimensional real vector representing the initial condition.

Now consider another ODE that uses a different ordering parameter s, state descrip-

tion p(s), system input v(p), and output q(t):

dp/ds = f (p, v, s) , p (s0) ; q = g (x, u, t) .

When considering integrating these two systems to form a sibling (lateral, flat, non-

hierarchical), the modeler must find mappings t ~ = s, p ~ = x, v ~ = u, and y ~ = q.

Almost without exception, this means finding expressions for each element in some

real-world units, an absolute ground. More importantly, integrating the two models

when the scales are very different, even if the units are the same, presents technical

choices the modeler must make. Those choices impact the behavioral solution the

scientist sees. See [1] for details and examples. Again, the typical solution for
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engineered systems is to ground the entire model in the same, low-level units, a “least

common denominator” as it were, effectively flattening the model. Note that there are

modeling tools like Ptolemy II [20] that help the modeler make these decisions with

much reduced effort [21]; but as Bassingthwaighte et al. [19] make clear, the decisions

must still be made.

Grounding to hyperspaces increases flexibility and extensibility. A hyperspacel is a

composite of multiple metric spaces (and possibly non-metric sets). Grounding to a

hyperspace provides an intuitive and somewhat simple interpretive map (e.g., see [22]).

Relational and hyperspatial groundingm is more intuitive and understandable by the

biomedical scientist than are absolute groundings. Phenomena and generators are

more distinct, because derived measures will often have hyperspace domains and co-

domains, making them more complex as interpretive functions. Hyperspaces are often

intuitively discrete, so they do not require discretization. They thus handle heterogene-

ity better than does a model grounded to a metric space. The High Level Architecture

(i.e., IEEE standard 1516-2010) and federated systems for distributed computer simula-

tion systems provide for hyperspace grounding. Their focus is to define interfaces

(boundary conditions) explicitly so that components adhere to a standard for such

interfaces.

Hybrid versions of grounding methods are also possible. Some models can be synthe-

sized by plugging together components consisting of simpler models. For example, in

[23], the outputs of metrically-grounded, equation-based models of subcellular molecu-

lar and cell cycle details contribute to discrete rules used by cell level agents.n Such

coupling makes them somewhat relational because not every component must be con-

nected to every other component or grounded to the same data types throughout.

However, their synthesis will depend in a fundamental way on their grounding, as in

[24] and [25]. Example Two above is a hybrid model. Models adhering to the High

Level Architecture and similar standards can be considered hybrids, because their sub-

models can integrate in a variety of ways, either relationally or absolutely.

Absolute grounding can simplify integration by forcing common units and, hence, a

common integration target, but context change may require model reengineering

As discussed by Hunt et al. [3], absolute grounding makes the model very fragile to

changes in referent context, where context means the particular situation and condi-

tions of the experimental data used to produce the model or in which the model will

be used. Inductive, equation-based models are typically grounded to metric spaces

because they are induced from particular experiments. They are often fragile to

changes in context. This is the case for both Examples One and Two above. The

expanding network of assumptions on which the inductive biological model depends

makes them increasingly fragile to context change as one moves from right to left in

Figure 1. This means they are unlikely to be reused (in fact, the overwhelming majority

are not reused). However, an important, scientific motivation for interest in multi-attri-

bute, multiscale, hierarchical, biomimetic models is to explore new uses, such as the

consequences of interventions, specifically therapeutic and environmental, or of

abnormalities (such as tumorigenesis). For the referents, such interventions often alter

context, and these alterations need to be accounted for by the models.
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When one changes the environment and experimental conditions of a wet-lab system

(primary tissue explants, for example) from A to B, the living constituents simply

adapt. An inductive, absolutely-grounded MSM that is parameterized and has under-

gone validation against phenomena measured in context A may need to undergo con-

siderable reengineering and reparameterization in order to validate against the altered

phenomena measured in context B. Analogues that use relational grounding can be

easily adapted to function in a new context, but the in silico-to-referent mappings will

change.

Models grounded absolutely are implicitly multi-model and making that explicit can be

useful

Consider a large, multiscale, ODE model of cancer growth (under specific experimental

circumstances) that is grounded absolutely. It is an accretion of several model compo-

nents, including 1) one or more equations ideally describing a phenomena/mechanism

of interest 2) a set of features/aspects hypothetically (conceptually) generated by

(usually incomplete) understanding of a specific referent system, and 3) the corre-

sponding measurement units for 2), conceived to provide a precise, quantitative map-

ping to the referent system. The conceptual models are grounded to the biology via

the literature and may contain bias or questionable assumptions from earlier modeling

and (likely) experimental efforts. Good science requires that these different models be

specifically identified. Such model accretion reduces flexibility and limits reuse. An

optional approach to model the same cancer growth (e.g., [26]) would be to first con-

ceptually map the components of specific referent system features with actual, concrete

software objects and spaces that have execution protocols. Such a system would be

grounded relationally. Actual measures (as opposed to hypothetical assignments) could

be taken of phenomena generated during execution. Most of the latter measures would

be grounded metrically, but their units would be arbitrary. Finally, quantitative map-

ping models would be required and used to relate measures of in silico phenomena to

real measures of referent phenomena. Such model separation increases flexibility and

encourages reuse. Examples are provided by [5-8,17,26-28].

Multi-paradigmo modeling requires both hyperspatial and relational grounding

Even in the simplest case of multi-paradigm modeling, integrating a discrete event sub-

model with a discrete time (e.g., ODEs) sub-model, mappings must be made between

the components so that the system as a whole behaves appropriately. Example Two

above illustrates such mappings. When metric grounding is preferred, the most expedi-

ent route is absolute grounding. In that common case, the units of the entire system

provide the “least common” grounding so that the events and the I/O of the discrete

time components will relate. This effectively flattens hierarchical models and provides

a single, ideal, paradigm (that of an approximation to a continuous system) to which

all components relate (e.g., Example Two, the hybrid model discussed above). How-

ever, MSMs in which each component can consist of internal mechanisms that are

unrelated to (can be independent of) the internal mechanisms of other components

will require relational grounding. To preserve hierarchy (avoid flattening), hyperspatial

grounding will also be required.
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Biomimetic analogues designed to facilitate translational research and development

must have long lifecycles

Cell culture models have attributes for which human counterparts are believed to exist.

They also have some attributes for which there are no human (or whole organismal)

counterparts. This is true of all model-referent relationships. Conceptual mappings

from one wet-lab model to another or from a wet-lab system to human referents can

be supported by validation evidence, yet they are difficult to falsify: falsification, not

validation, leads to new knowledge. One relationally grounded analogue can be

morphed into another. Park, et al. [6] provides an example. That morphing stands as a

model of the conceptual mapping: it can be directly challenged and falsified (or not).

Biomimetic analogues designed to support translational research are expected to

evolve, to be iteratively revised following experimental challenge [3,29]. We expect

them to be expanded to become more realistic and trustworthy, and thus more scienti-

fically useful. Their limitations will also become better understood, which increases the

believability of the model as long as it is used within its limits. At the same time, it

points out what conditions are perhaps not being treated properly in the model. Con-

sequently, the models must be adaptable and extensible, and this (we maintain)

requires that they employ relational grounding, like their referents. Those that do can

possess long lifecycles. They will help us understand what does and does not translate

from one wet-lab model to another as well as what can actually transition from bench

to bedside. Some will mature to become virtual tissues and organs, to be used as com-

ponents in virtual patients [3]. We suggest that virtual biology components begin as

relational analogues and remain so to the degree feasible, and that separate model-to-

referent mapping models be developed in parallel.

Exploring mechanisms of normal-to-disease transition requires model components that

use relational grounding

Multi-attribute, MSMs are expected to help achieve exploitable insight into normal-to-

disease transitions and facilitate discovery of new treatment options. Normal-to-disease

transitions may involve changes in how components at multiple levels interact. Multi-

level structural changes can occur. Those circumstances place us on the left side of

Figure 1 scales where inductive models grounded metrically may not be up to the task.

On the left side in Figure 1, many alternative mechanistic scenarios need to be

explored and challenged. Having components grounded absolutely makes exploration

of that changing mechanism space problematic. Reliance on relational grounding sim-

plifies mechanism exploration and makes the process more intuitive.

Components in composite, multi-attribute, biomimetic modules and models need some

autonomy: relational grounding facilitates providing component autonomy

All models have a degree of articulationp, which is the extent to which the model con-

sists of distinct parts, modules, or components. Bassingthwaighte et al. [19] discuss the

distinctions in the context of multiscale, mathematical models that rely on absolute

grounding. An ODE model, for example, can be analyzed into parameters, variables,

terms, etc. Some distinct components of a cellular automaton model are its transition

rules for each cell, and the states held by cells. A model’s articulation is the extent to

which the components are encapsulated and the internal dynamics of the components

Hunt et al. Theoretical Biology and Medical Modelling 2011, 8:35
http://www.tbiomed.com/content/8/1/35

Page 17 of 22



are independent of those of the other components. This concept extends beyond the

typical OOP encapsulation of state and behavior into activity, and is critical for compo-

site, biomimetic models. When a component does not need any other components to

enable initiating and maintaining its own run-time, then that component is autono-

mous. Mammalian cells can be autonomous in vitro. Scientifically useful in silico mod-

els, of these referent systems will likewise need to possess autonomy.

Tissues and organs are highly articulated systems. The components in a highly articu-

lated model of one of those systems will need to be quasi-autonomous. That means that

they can be effectively replaced by other components. Such a situation is achieved by

specifying the I/O requirements of the components in ways consistent with biology. If

module I/Os are specialized and tightly coupled to the other components and modules

in particular and unique ways, then the model can be called a “composite” or “articu-

lated” model from an engineering standpoint. However, from a practical perspective, it

remains monolithic. One cannot easily remove (unplug) a component and use it else-

where. It is straightforward to isolate primary epithelial cells, separate them, and study

them as tissue culture models. M&S requires computational analogues possessing simi-

lar capabilities, since, taking a long-term, view, we want our analogs to be “alive,” to

whatever extent is possible using computation, so that they are as similar as possible to

their referent systems. After all, biology is the study of life, and so biological models

must mimic attributes of life; indeed, “biomimetic” is not a catachresis.

The spectrum of model articulation issues is orthogonal to those of absolute vs. rela-

tional, and metric vs. hyperspatial grounding. The extent to which a component is

autonomous is handled by the clear specification and maintenance of component use

casesq (aspects; phenotypic attributes) or, collectively, the component’s phenotype.

Autonomy can be established regardless of how the model is grounded, but only when

targeted phenotypic attributes are clearly defined. For example, one might argue that a

purely relational model, where every component’s I/O is meaningful only in the context

of the other components with which it communicates, lacks any autonomy. That will be

the case as long as there is only one use case for that component and a single use case

for all connected components, or as long as that particular, specific organization of com-

ponents is unique and no other arrangement makes sense/is needed. However, if even

one of the components has multiple use cases (multiple plausible configurations; may

exhibit different attributes, e.g., when stressed in different ways), then the degree of

autonomy of that component (and all those connected to it) increases. Complete auton-

omy for a component is achieved in the limit as phenotype expands, regardless of how

the component is grounded. A Madin Darby canine kidney (MDCK) cell culture can

have a huge number of phenotypic attributes (use cases), as can each cell within. Hence,

a scientifically useful, in silico analogue of MDCK cell cultures must have a large num-

ber of specified use cases. To enable that, the composite cells in the analogue (and com-

ponents and modules therein) must possess a high degree of autonomy to enable a

myriad of specified use cases and biomimetic attributes.

A composite model (aka, MSM) is a graph of components integrated by I/O edges;

relational grounding enables synthesis of large composite (multi-module) models

Composite models can be understood as graphs of black (or gray or transparent) box

vertices integrated by I/O edges. The desired or targeted biomimetic attributes for
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each component dictates I/O types. If two components are grounded differently, there

must be integration logic to map the I/Os of the two components. Even in the case

where the two components are grounded absolutely and metrically, there must be

component intermediaries (e.g., the “scaling translators” in [30]) that map one compo-

nent’s output to another’s input. Hence, explicitly handling the edges between the

black boxes, as methods for mapping I/O, is a best practice no matter what type of

model one constructs.

An additional issue to consider is the extent to which (seemingly) purely technical

components are exposed to (integrated with) the modeling layer. There are many mod-

els where various technical components must be chosen depending on the details of

the model. For example, when a system of ODEs becomes “stiff”, i.e., solver instability

occurs, even with simple but pathological equations like y = (x2 - 3x)/(x - 3.001),

which is erroneously solved by Mathematica. Such examples provide further evidence

that the explicit design of inter-component mappings is a best practice when develop-

ing composite, biomimetic models.

Conclusions
In this article, we have reviewed and defined model grounding concepts, highlighted

their spectrum, and explained when and how modelers should incorporate different

types of grounding (or combinations thereof). We have discussed two literature exam-

ples of complex models from somewhat different domains but share a common thread

in that each could benefit from detailed grounding considerations. We are led to the

belief that if we accept that explicit I/O mapping is a best practice when developing

composite biomimetic models, and that relational grounding of composite models

forces development of such methods, it becomes clear that relational grounding is a

robust and preferred modeling method. However, relational grounding is inappropriate

when the model being considered is, naturally, monolithic or non-articulated, i.e.,

when all the components are fundamentally dependent on the structure of the I/O of

other components. The latter is often the case when dealing with purely mathematical

models. We maintain that grounding issues should be addressed at the start of any

MSM project and should be reevaluated throughout the model development and

refinement processes. We offer a general guideline. When validation data are not avail-

able, it is most reasonable to first build a qualitative, relational model, and then quali-

tatively validate and make predictions that will help design wet-lab experiments on the

referent system, results of which may then be used to refine the qualities and relations

in the model. This process should be iterated until quantitative data are available to

help falsify the model and make precise predictions. As we do so, we move from left

to right in Figure 1, and approach models that more closely represent biological

processes.

Endnotes
Glossary of key technical terms
a absolute grounding: variables, parameters, and I/O are in real-world units like sec-

onds and meters
b relational grounding: variables, parameters, and I/O are in units defined by other

components of the model. For example, if one component’s output is in the set
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{form_lumen, elongate, bifurcate, branch, form_cleft} and a receiving component

accepts elements in that set as its input
c aspect: the perspective taken when an analogue is observed; one of many functional

effects that result and can be observed when an analogue executes
d referent: the system, material, or process represented by a model or model compo-

nent. It is the real system (subsystem) to which a model (or component) refers. Exam-

ple: consider the ODE term CELung for concentration of antibody in the endosomal

compartment of lung tissue in Example One. The term is the model component and

its referent is that concentration in the real tissue.
e metric grounding: variables, parameters, and I/O are in subsets of metric spaces.

For example, when a parameter takes real number values in the range [-1.0, 1.0]
f analogue: anything that is analogous or similar to something else, and that exists

and operates in isolation even in the absence of a referent; a system that has aspects

and attributes that are similar to those of a referent system; a biomimetic model imple-

mented in software that, when executed, produces phenomena that mimic those of the

model’s referent
g agent-based: something formulated with or built up from agents; [in agent-based

modeling] a model designed for simulation in which quasi-autonomous agents are key

components
h biomimetics is the study of the structure and function of biological systems as

models for the design and engineering of materials and machines, in this case compu-

tational models. It is often regarded as being synonymous with biomimicry, biomim-

esis, biognosis and biologically inspired design.
i induction: arrival at a conjecture (universal conclusion) based on a pattern observed

in many particular cases; generalization: reasoning from detailed facts to general princi-

ples; generalization drawn from patterns in observed data
j abduction: arrival at conjectures based on a pattern observed in one or a few parti-

cular cases; construction of hypothetical speculations (consistent with current knowl-

edge) about the process by which an outcome (phenomenon) came to be, where the

hypotheses are all equally reasonable as long as they lead to the outcome; arrival at a

conjecture (hypothesis) that would, if true, explain the relevant evidence
k synthetic analogue: an analogue system constructed from extant, autonomous com-

ponents whose existence and purpose are independent of the model they comprise;

one formed specifically by combining elements, often varied and diverse, so as to form

a coherent whole
l hyperspace: a set, X, of sets, xi, where each constituent set xi may or may not be a

subspace of some metric space. For example, the three element set {x0, x1, x2} where

x0 = {A, B, C}, x1 = [-1.0, 1.0], x2 = {red, blue, green} is a hyperspace
m hyperspatial grounding: grounding to a hyperspace
n agent: [technical] an object within an OO program that can schedule its own

events [within an analogue: it is quasi-autonomous; it senses and is part of its environ-

ment; it pursues and can revise an agenda within a larger script; it is identifiable by an

observer as a cause of an effect; its attributes and actions may be designed to represent

biological counterparts, whereas others will deal with issues of software execution]
o multi-paradigm model: A model that integrates more than one type of computational

framework. (cf. http://en.wikipedia.org/wiki/Multiparadigm_programming_language)
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For example, when a model combines an expert system with several fluid dynamics

models
p articulation: the extent to which the model consists of distinct, interconnected parts

or components; the extent to which components are encapsulated and their internal

dynamics are independent of those of the other components
q use cases: the aspects of the referent that the model intends to mimic or represent;

how and for what purposes the model will be used (simulation scenarios). A compo-

nent’s or model’s phenotype: the set of all targeted attributes.
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