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Abstract

Background: The invasion of a new species into an established ecosystem can be
directly compared to the steps involved in cancer metastasis. Cancer must grow in a
primary site, extravasate and survive in the circulation to then intravasate into target
organ (invasive species survival in transport). Cancer cells often lay dormant at their
metastatic site for a long period of time (lag period for invasive species) before
proliferating (invasive spread). Proliferation in the new site has an impact on the
target organ microenvironment (ecological impact) and eventually the human host
(biosphere impact).

Results: Tilman has described mathematical equations for the competition between
invasive species in a structured habitat. These equations were adapted to study the
invasion of cancer cells into the bone marrow microenvironment as a structured
habitat. A large proportion of solid tumor metastases are bone metastases, known to
usurp hematopoietic stem cells (HSC) homing pathways to establish footholds in the
bone marrow. This required accounting for the fact that this is the natural home of
hematopoietic stem cells and that they already occupy this structured space. The
adapted Tilman model of invasion dynamics is especially valuable for modeling the
lag period or dormancy of cancer cells.

Conclusions: The Tilman equations for modeling the invasion of two species into a
defined space have been modified to study the invasion of cancer cells into the
bone marrow microenvironment. These modified equations allow a more flexible
way to model the space competition between the two cell species. The ability to
model initial density, metastatic seeding into the bone marrow and growth once the
cells are present, and movement of cells out of the bone marrow niche and
apoptosis of cells are all aspects of the adapted equations. These equations are
currently being applied to clinical data sets for verification and further refinement of
the models.
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tic niche

Background
A patient with prostate cancer, Mr. S. presents to clinic for consideration of further

therapy. He is a 65 year old man that was diagnosed 12 years ago with a poorly differ-

entiated, localized prostate cancer (PCa) when he presented for a routine physical

exam and was found to have an elevated prostate specific antigen (PSA) blood test.

Digital rectal exam revealed no abnormalities but prostate ultrasound and biopsy
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revealed a Gleason 5+4 = 9 cancer (clinical stage T1cNxMx). Because Mr. S. was in

otherwise excellent health, he chose to undergo a radical retropubic prostatectomy and

his prostate was removed. All of his lymph nodes were negative for cancer. He was

considered to be cured of his disease.

Five years later, Mr. S’s PSA became detectable and he now has 3 lesions present on

bone scan. He has metastatic prostate cancer, now incurable. Each year, approximately

40,000 men who “should” have been cured of their prostate cancer by surgery or radia-

tion therapy present with incurable metastatic disease that will manifest itself as meta-

static lesions in the bone, usually years after primary treatment. The only explanation

for this is that disseminated tumor cells (DTCs) are present in the bone microenviron-

ment before surgery or radiation eradicated the primary tumor. How these cells traffic

to the bone, become dormant, and then ultimately begin to proliferate are subjects of

great interest to the cancer field.

Mr. S’s cancer experience is not unique. PCa remains the most common cancer and

the second leading cause of cancer-related death in American men today. Approxi-

mately 72% of patients who undergo radical prostatectomy had DTCs in their marrow

prior to surgery suggesting that marrow dissemination is an early event in the progres-

sion of PCa disease. Clearly the ability of DTCs to proliferate, undergo apoptosis or

become dormant must occur soon after the initial arrest of circulating tumor cells

(CTCs) in the marrow. Unquestionably, a greater understanding of the molecular

events that regulate a DTC’s ability to become, and remain dormant over long periods

is crucial to define new therapeutic strategies to combat disease progression. New

mathematical models to understand these events may help further define strategies for

understanding mechanisms of cancer cell trafficking and subsequent dormancy.

Eugene Odum, one of the founders of the science of ecology, defined an ecosystem

as: “Any unit that includes all of the organisms (the biotic community) in a given area

interacting with the physical environment so that a flow of energy leads to clearly

defined biotic structures and cycling of materials between living and nonliving compo-

nents is an ecological system” [1]. The ecosystem is the first unit of the ecological hier-

archy that is complete, i.e., that has all of the necessary components for survival.

Ecosystems do not exist independently, but interact in a complex web of relationships

that connect all ecosystems to make up the biosphere [1]. Using the ecosystem para-

digm, cancer cells, growing in an organ, can be considered to be a species co-existing

in a complex habitat with other host cells. Together, the cancer cells and host cells,

interacting within their habitat, create an ecosystem. This ecosystem, in turn, exists

within a larger environment (the host patient as biosphere). The study of ecology,

then, has the potential to offer insights into tumor biology. This is especially true for

the study of metastasis [2,3].

Ecologists have studied the population biology of invasive species for decades and

have documented their impact on local environments as well as the global ecosystem

as a whole [4-6]. Invasive species start as a native population within a defined commu-

nity and are then transported by some means to a new environment [4]. In this new

environment, the invader either then dies off or enters a period of time during which

it establishes itself (lag period). It then begins to spread and have impact on the local

environment, disrupting the ecosystem as a whole. This disruption has broad implica-

tions for the native species and the broader ecosystem [4]. Biologic traits that result in
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a robust invasive species include rapid proliferative capacity, adaptation to environ-

mental stress (phenotypic plasticity) and high tolerance to environmental heterogeneity

[7-10].

The life cycle of invasive species is directly analogous to the study of cancer metasta-

sis [Figure 1] [4-10]. Cancer must grow in a primary site, extravasate and survive in

the circulation to then intravasate at a target organ (invasive species survival in trans-

port). Cancer cells often lay dormant at their metastatic site for a long period of time

(lag period) before proliferating (invasive spread). Proliferation in the new site has an

impact on the target organ microenvironment (ecological impact) and eventually the

human host (biosphere impact) [11-13]. Studies of the population biology of invasive

species have allowed a more precise focus on specific characteristics involved in inva-

siveness [14-16]. Tilman has described mathematical equations for the competition

between species in a structured habitat [16]. These equations can be adapted to study

the invasion of cancer cells into the bone marrow microenvironment as a structured

habitat. Within the bone marrow microenvironment, hematopoietic stem cells (HSC)

homing, quiescence, and self-renewal depend on the bone marrow HSC niche. A large

proportion of solid tumor metastases are bone metastases, known to usurp HSC hom-

ing pathways to establish footholds in the bone marrow. Recent evidence suggests that

tumor cells target and parasitize the HSC niche during metastasis just as invasive

Figure 1 Population biology of invasive species and metastasis. The generalized steps necessary for a
species to invade a new ecologic niche are directly analogous to the steps of cancer metastasis (modified
from Sakai and colleagues [4]). The transport, establishment, and spread of invasive species can be
compared to the intravasation of cancer cells into the blood stream where they are transported to a target
organ where they extravasate. The cancer cells then enter a dormant period (lag period for invasive
species) before growing, and displacing the host cells (native species). This results in damage to the local
organ and eventually the host patient (human impact).
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species do in the world [17]. We adapted the Tilman model of invasion dynamics to

model cancer cell metastasis to the bone marrow microenvironment.

Tilman’s model of the dynamics of two species invasion into a structured habitat

If a single species cannot occupy all the sites in a habit, e.g., because of a certain death

rate or natural movement in and out of the environment, another species may be able

to invade into and survive in the open portion of a habitat. In Tilman’s model [16], a

superior species can displace the inferior species and occupy the lattice that was pre-

viously occupied by the inferior species. The inferior species, however, can colonize in

the lattice only if the lattice of the fixed and homogeneous environment is neither

occupied by superior species nor itself. The superior species occupies empty lattices

with a constant colonization rate (birth rate), b1. The inferior species occupies empty

lattices with a constant birth rate, b2. Either the death rate (μ1) of the superior species

or the death rate of the inferior species (μ2) causes the occupied lattices to be emptied.

It is assumed that the death rate and birth rate of the two species are independent of

each other. Table 1 defines the symbols of the model.

∂ρ1

∂t
= β1ρ1 (1 − ρ1) − μ1ρ1 (1)

∂ρz

∂t
= β2ρ2 (1 − ρ1 − ρ2) − μ2ρ2 − β1ρ1ρ2 (2)

Eq. 1 describes that the dynamics of the superior species is only dependent on the

colonization and its own death rate. Colonization, b1 r1(1-r1), indicates that when one

member of the superior species grows, the member is not affected by any member of

the inferior species. In other words, any member of superior species can displace the

member of the inferior species. The part of the equation μ1r1 describes the density-

independent mortality of superior species itself. Eq. 2 describes the dynamics of the

inferior species is dependent on the colonization, mortality and the competitive displa-

cement. Colonization, b2r2(1-r1-r2), indicates that the inferior species can colonize a

lattice if it is unoccupied. A member of the inferior species, therefore, cannot displace

any member of superior species. The competitive displacement, -b2 r1 r2, indicates
that the inferior species is displaced by superior species growth (birth).

If Eq. 1 is set equal to zero, the equilibrium density for species 1 (superior species)

can be calculated,

Table 1 Symbols utilized in the equations

Symbol Definition

r1 Density of species 1

r2 Density of species 2

b1 Birth rate of species 1

b2 Birth rate of species 2

μ1 Death rate of species 1

b2 Death rate of species 2

� The ability (proportion) that species 1 can displace species 2 by the growth (birth) of species 1

v The ability (proportion) that species 2 can displace species 1 by the growth (birth) of species 2

t Time
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ρ1∗ =
(
1 − μ1

β1

)
(3)

Since species 2 (inferior species) is affected by the species 1 (superior species), the

equilibrium density for species 2 can be calculated after species 1 reach the equilibrium

density. Similarly, if Eq. 2 is set equal to zero, the equilibrium density for species 2

(inferior species) can be calculated,

ρ2∗ = 1 − μ2

β2
− ρ1 ∗

(
1 +

β1

β2

)
=

μ1

β1
− μ2

β2
+

μ1

β2
− β1

β2
(4)

The initial density of the two different species does not affect the final equilibrium

density. A very small initial density, however, requires more time to reach the equili-

brium density.

Adapting the invasion model to describe the invasion of cancer cells into the

hematopoietic stem cell niche of the bone marrow microenvironment

To better model cancer cell invasion, the Tilman equations were modified to take into

account that HSCs are already present in the bone marrow and that cancer cells are

the invading species. To observe competition between the two cell types, occupancy of

a niche site can occur through colonization by movement into the site or by cell divi-

sion (birth) rate. The avidity of the cell to occupy a niche site is reflected by a cell

moving out of the niche or undergoing apoptosis (death rate). First, it was assumed

that HSCs colonize the bone marrow niche in a more robust manner than cancer cells.

i.e., HSCs are the superior species (Figure 2A, B and 2C). Under these conditions, colo-

nization and niche occupancy of the superior species (HSC) is not affected by cancer

cells. Furthermore, the initial density of either species does not affect the equilibrium

density of both species, but does affect the time it takes to reach the equilibrium den-

sity. This may be a potential model for studying dormancy of cancer cells.

Alternatively, it can be assumed that cancer cells are more avid for the bone marrow

niche and are the superior species (Figure 3A, B and 3C). Notably, a high initial density

is set for the inferior species (HSC) instead of the low initial density for the inferior

species above. The observations found in Figure 2 were again demonstrated. First,

although the superior species (cancer cells) has very low initial density, the superior

species (cancer cells) is not affected by inferior HSC cells. Second, the initial density of

either superior species (cancer cells) or inferior species (HSC) does not affect the equi-

librium density of both species, but the initial density of the superior species (cancer

cells) affects the time it takes to reach the equilibrium density. Third, compared to Fig-

ure 3(A) and 3(B), 3(C) shows a lower equilibrium density for the inferior species

(HSC) because of a lower birth rate of species 2. The results are consistent with Eq. 4.

As noted, the Tilman’s model describes the coexisting dynamics between superior

and inferior species. However, the superior species is not affected by the inferior spe-

cies. When modeling the real dynamics between HSC and cancer cells, it is doubtful

that HSC or cancer cells behave in this absolute manner as a superior or inferior spe-

cies. Thus, Tilman’s model was amended to allow more interaction between the two

species.

To take into account that both species have some ability to displace each other, the

equations were further modified.
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A. 

 

B. 

C. 

Figure 2 Competition among two species: HSCs as the superior species. The red (dash) line indicates
the superior species (HSC); the green (solid) line indicates the inferior species (cancer cells). (A) superior
species (HSC) has colonization rate b1 = 0.2, mortality rate μ1 = 0.1 time-1, and initial density = 0.6. The
inferior species (cancer cells) has a colonization rate of b2 = 0.8, mortality rate μ2 = 0.1 time-1, and initial
density = 0.0001. (B) The inferior species (cancer cells) has an initial density = 0.1; all other conditions
remained the same as in (A). (C) Superior species (HSC) has an initial density = 0.4; all other conditions
remained the same as in (A).
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A. 

B. 

 

C. 

*

Figure 3 Competition among two species: Cancer cells as the superior species. The red (dash) line
indicates the superior species (cancer cells); the green (solid) line indicates the inferior species (HSC). (A)
Superior species (cancer cells) has a colonization rate of b1 = 0.2, mortality rate μ1 = 0.1 time-1, and initial
density = 0.0001. Inferior species (HSC) has a colonization rate b2 = 0.8, mortality rate μ2 = 0.1 time-1, and
initial density = 0.5. The * of the density curve of the inferior species is obtained from Eq. 2. (B) The
superior species (cancer cells) has initial density = 0.01, and the inferior species (HSC) has initial density =
0.85; all other conditions remained the same as in (A). (C) The inferior species (HSC) has initial density =
0.84 and colonization rate b2 = 0.6 time-1 ; all other conditions remained the same as in (A).
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∂ρ1

∂t
= β1ρ1

[
1 − ρ1 − (1 − k) ρ2

] − μ1ρ1 − β2ρ2ρ1v (5)

∂ρz

∂t
= β2ρ2 [1 − (1 − v) ρ1 − ρ2] − μ2ρ2 − β1ρ1ρ2k (6)

Coefficients, k(0 ≤ k ≤ 1), expresses the ability (proportion) that species 1 can dis-

place species 2 by the growth (birth) of species 1. Therefore, (1-k) expresses the pro-

portion of species 2 that is not displaced by species 1. The colonization of the species

1, b1r1[1-r1-(1-k) r2], indicates that when the species 1 grows, the species 1 is affected

by the (1-k) proportion of species 2 (Eq. 5). Species 1 can displace the k proportion of

the species 2, but not all of species 2. Similarly, coefficients, v (0 ≤ v ≤ 1), expresses

the ability (proportion) that species 2 can displace species 1 by the growth (birth) of

species 2. If k is larger than v, then species 1 has a stronger ability to displace species

2 (species 1 is the relative superior competitor).

The competitive displacement in Eq. 5, -b2r2r1v, indicates that the v proportion of

species 1 is displaced by species 2’s invasion or growth (birth in the equation). The

competitive displacement in Eq. 6, -b1r1r2k , indicates that the k proportion of species

2 is displaced by species 1’s birth. Both k and v express the displacement ability from

species 1 and 2’s birth, and are independent of each other. It is assumes that species 1

and species 2 do not change the lattice (occupancy of the niche) once they are given a

birth until they are displaced. It is also assumes that when either species 1 or species 2

grow (birth rate), the lattice that they are going to occupy is chosen randomly. In addi-

tion, once either member of species 1 or species 2 is displaced, they will abandon the

fixed and homogeneous space. Thus, the only reason that they may compete for the

same lattice is because of the birth (movement in of a new cell or growth).

Hematopoietic stem cells (HSC) and cancer cells were modeled as the two species.

Resuming the scenario at Figure 3, it was assumed that cancer cells are the relative

superior species and HSC are the relative inferior species (Figure 4A, B and 4C). To

reflect what happens in cancer in the body, the initial density for the inferior species

(HSC) was set at a high level and a low initial density was set for the invading cancer

cells. All values that generated the curves in Figure 4A, B and 4C are equivalent to the

values in Figure 3A, B and 3C, respectively. To demonstrate the simulations clearly,

the time maximum was changed to 1000 in Figure 4. The equations applied to Figure

4 are:

∂ρ1

∂t
= β1ρ1[1 − ρ1 − 0.1ρ2] − μ1ρ1 − β2ρ2ρ1 × 0.1

∂ρ2

∂t
= β2ρ2[1 − 0.9ρ1 − ρ2] − μ2ρ2 − β1ρ1ρ2 × 0.9

κ = 0.9, v = 0.1

This results in cancer cells displacing most (90%) of the HSCs. However, the HSCs

can also displace a small portion (10%) of the cancer cells. Comparing the conditions

in Figure 3 versus Figure 4, the equilibrium densities of the cancer cells are lower in

Figure 4 and it takes longer time for both species to reach their equilibrium densities

in Figure 4.
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A. 

 

B. 

 

C. 

Figure 4 Competition among two species. The red (dash) line indicates the relative superior species
(cancer cells); the green (solid) line indicates the relative inferior species (HSC). Superior species (cancer
cells) can displace 90% of the inferior species (HSC). Inferior species (HSC) can displace 10% of the superior
species (cancer cells). (A) Superior species (cancer cells) has colonization rate b1 = 0.2, mortality rate μ1 =
0.1 time-1 , and initial density = 0.0001. Inferior species (HSC) has colonization rate b2 = 0.8, mortality rate
μ2 = 0.1 time-1 , and initial density = 0.5. (B) The superior species (cancer cells) has initial density = 0.01,
and the inferior species (HSC) has initial density = 0.85; all other conditions remained the same as in (A).
(C) The inferior species (HSC) has initial density = 0.84 and colonization rate b1 = 0.61 time-1 ; all other
conditions remained the same as in (A).
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Conclusions
The Tilman equations for modeling the invasion of two species into a defined space

have been modified to study the invasion of cancer cells into the bone marrow micro-

environment. This required accounting for the fact that this is the natural home of

hematopoietic stem cells and that they already occupy this structured space. These

modified equations allow a more flexible way to model the space competition between

the two cell species. The ability to model initial density, birth rate (metastatic seeding

into the bone marrow and growth once the cells are present) and death rate (move-

ment of cells out of the bone marrow niche and apoptosis of cells), are key compo-

nents of this equations. The equations allow modeling of metastasis and the lag period

of cancer cells. These equations are currently being applied to clinical data sets for ver-

ification and further refinement of the models. First, it is likely that during the progres-

sion from primary tumors to metastasis, genomic alterations occur, resulting in genetic

and phenotypic changes. This article treated the cancer cells as a single species when

in fact, it may be reasonable to treat them as multiple species based on their genetic

heterogeneity (different genomes = different species) (18,19). The model can also be

adapted to take into account mutation over time, i.e., the cancer cell population is rela-

tively weak following initial metastasis, and becomes strong over time and dominates

during the late stages. The fields of ecology and population biology are rich sources for

understanding the biology of metastasis.
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