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Abstract

Background: In nature, deuterium/hydrogen ratio is ~1/6600, therefore one of ~3300 water
(H,O) molecules is deuterated (HOD + D,0O). In body fluids the ratio of deuterons to protons is
~1/15000 because of the lower ionization constant of heavy water. The probability of
deuteronation rather than protonation of Asp 61 on the subunit ¢ of Fypart of ATP synthase is also
~1/15000. The contribution of deuteronation to the pKa of Asp 61 is 0.35.

Theory and Discussion: In mitochondria, the release of a deuteron into the matrix side half-
channel of Fis likely to be slower than that of a proton. As another example, deuteronation may
slow down electron transfer in the electron transport chain (ETC) by interfering with proton
coupled electron transport reactions (PCET), and increase free radical production through the
leakage of temporarily accumulated electrons at the downstream complexes.

Conclusion: Deuteronation, as exemplified by ATP synthase and the ETC, may interfere with the
conformations and functions of many macromolecules and contribute to some pathologies like

heavy water toxicity and aging.

Background

Deuteronation

In nature, the ratio of deuterium to hydrogen is ~1/6600
[1], therefore the ratio of deuterated + heavy water (HOD
+ D,0) to water (H,0) is ~1/3300. In the atomic nucleus
of hydrogen there is only one proton, while in deuterium
there is one proton and neutron. One dissociation prod-
uct of water is a proton (H+)/H;0O; for D,0O, the equiva-
lent product is a deuteron (proton + neutron) (D+)/
H,0D+* + D;0O*. The ionization constant of D,O (1.95 x
1015, pD = 7.35) is 5.17-fold lower than that of H,O
(1.008 x 1014, pH = 6.99) [2]; thus, the ratio of protons
in water to deuterons in heavy water is 2.27. Although the
ratio of hydrogen to deuterium is 1/6600, the ratio of deu-
terons to protons is 1/2.27 x 6600 = ~1/15000 (Table 1).

Therefore, in any biological process in which protonation
is involved, there is ~1/15000 chance of deuteronation.

ATP Synthase

ATP synthase (F,F, ATPase), an inner mitochondrial
membrane enzyme complex, is a molecular motor that
uses protonation to generate a wheel-like rotation to cata-
lyse the synthesis of ATP, which is the most important
energy currency in living systems. During mitochondrial
electron transport, protons are pumped from the matrix to
the intermembrane space by the electron transport chain
(ETC) complexes 1, III and IV by a mechanism coupling
electron transport to proton passage. The proton gradient
thus formed and the consequent proton motive force
rotates the rotor part of F, This torque is transmitted by
the stalk part of ATP synthase to F;, which produces one
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ATP with the passage of approximately three protons [3-
5].

F, is hydrophobic, spans the mitochondrial inner mem-
brane and is estimated to have ~10 c subunits. The c sub-
units form a wheel-like structure that is a part of the
"rotor". In E. coli, there is an aspartic acid residue in the
middle of the second helix of subunit c. Subunit a of F,
binds to the outside of the rotor and forms part of the "sta-
tor". There are two proton half-channels (termed cytosolic
and matrix in mitochondria) of "subunit a", on the inter-
face between subunits ¢ and a. The proton concentration
in the intermembrane space is ~25 fold higher than that
in the matrix. The entry of protons into the cytoplasmic
half-channel is also facilitated by a +0.14V membrane
potential, which increases the proton concentration in the
orifice of this channel. Protons entering the cytoplasmic
half-channel reach Asp61. Protonation neutralizes this
residue, which moves into the lipid bilayer, finally turning
the rotor. However, throughout the whole rotation of the
rotor, an Asp61 facing the matrix half-channel should be
deprotonated thanks to the stator charge of Arg210 on
subunit a (Figure 1). If both Asp61 sites facing half-chan-
nels are protonated at the same time, the rotor turns freely
in both directions [3-7].

Proton conduction in the channels is proposed to occur
via hopping and reorientation of protons (H*, not H;O+)
- or deuterons if heavy water is substituted for water - by
a Grotthuss or proton wire mechanism, and has been
shown to be subject to an isotope effect [8].

Theory and Discussion

Deuteronation of ATP synthase

There is a pKa difference of 0.35 (difference between pH
and pD) between protonated and deuteronated Asp61.
This increase of pKa probably slows the dissociation of the
deuteron. The stator charge of Arg210 is normally suffi-
cient to ensure the dissociation of the Asp61 facing the
matrix half-channel. However, this dissociation is likely to
be slower at this new pKa, temporarily causing free move-
ment of the rotor in both directions [3,4][9,10]. Neverthe-
less, it is not expected that deuteronation will completely
inhibit ATP synthase activity: if this were the case, given a
maximum proton transit rate through Fjof ~1000/s [11],
we would expect ATP synthase activity to stop at the prob-
able passage of deuterons within ~15 seconds. Since the
half life of the c subunit of F;is 40-50 hours [12], this
would kill an organism within a very short time.

Molecular motors, unlike normal motors, are subject to
thermal fluctuations (Brownian motion) [13]. The time
that deuteron on Asp61 faces the matrix half-channel
(while not inside the lipid bilayer) may not be sufficient
for dissociation to be complete as fast as proton, since it
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dissociates more slowly than a proton. This can be tested
in silico by molecular dynamics simulation studies on 3
dimensional atomistic models of F; in water. In the mod-
els ~1:6600 ratio of deuterium to hydrogen and ~1:15000
ratio of deuteron to proton must be secured.

It has been shown experimentally that the kinetics of the
F, (ATPase) part of ATP synthase do not change in the
presence or absence of D,0O [14]. However, the kinetics of
F, rotation in D,0 were not examined.

Biological effects of deuteronation

The dissociation of a deuteron from Asp61 of the ¢ subu-
nit when exposed to the matrix half-channel is likely to be
slowed, since it is exposed to the channel for a very short
time because of the Brownian motion of the ¢ subunit.
This slow dissociation may cause temporary stutter in the
rotor. If we were able to observe all ~15000 ATP synthases
(Table 1) in a mitochondrion, we would see a percentage
of them stuttering at any given time.

The deuteronation process may also disturb the function
of proton coupled electron transfer (PCET) reactions. For
example, it is likely to slow down electron transport in the
ETC in mitochondria and cause the upstream accumula-
tion and leakage of electrons, leading to increased free
radical generation.

Since the deuteron dissociates more slowly than the pro-
ton, protons on the water-exposed parts of macromole-
cules (e.g. DNA, RNA, proteins) can exchange with
deuterons. A deuteron has twice the mass of a proton and
it makes stronger and shorter bonds with different bond
angles [15,16]. The likely increase of deuterons on the
water-exposed parts of macromolecules (especially ones
having long half-lives) over time may cause conforma-
tional changes in a stochastic manner. These changes, if
they occur in the active sites of enzymes, are likely to affect
enzymatic activities.

There are many studies showing that different types of
macromolecules can be affected by H/D exchange. Kinetic
solvent isotope effects (KSIEs) represent the effect of iso-
tope (e.g. H/D) exchange on the rate constants of
enzymes. The activity of hepatitis delta virus (HDV)
ribozyme was reported to show significant KSIEs [17]. A
four fold decrease was reported in proton permeability
coefficient of chloroplast lipid bilayers when H,O was
replaced with D,O [18]. Solvent and substrate isotope
effect on the activity of 4-methoxybenzoate monooxygen-
ase from Pseudomonas putida was reported [19]. An effect
of nucleotide binding on H/D exchange was reported in
ATP synthase from the thermophilic Bacillus PS3 [20]. The
difference in protonation between the native and

Page 2 of 4

(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2007, 4:9

Table I: Parameters mentioned in the text and their values
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Parameter Value

D/H ~1/6600 [1]
(HOD+D,0)/H,0 ~1/3300
Deuteron/Proton ~1/15000
Proton transit velocity from F, ~1000/s [I1]

Half life of Fy C subunit
Number of ATP synthases in mitochondrion

40-50 hours [12]
in liver mitochondria: ~15000 [22]

unmodified forms of Escherichia coli tRNA(val) was shown
by H/D exhange in NMR studies [21].

Conclusion

If we consider the very high concentration of water in bio-
logical systems, it becomes difficult to neglect the relative
amounts of deuterated water and deuterons. It seems
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likely that deuteronation of ATP synthase and other mac-
romolecules has stochastic biological consequences. The
proposed mechanism could shed light on the mecha-
nisms of heavy water toxicity and on certain time depend-
ent pathological processes such as aging. The change in
the deuteronation level of purified macromolecules can
be measured in physiological/pathological processes by
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Proton/deuteron passage from F, of ATP synthase in mitochondria. Protons enter the cytoplasmic half-channel and
reach Aspél on subunits c. Protonated Asp6| moves into the lipid bilayer. When protonated Asp6| reaches the matrix half-
channel, it is deprotonated by the stator charge of Arg210 on subunit a. A temporary stutter of the rotor is expected during
the passage of deuteron. *The ratio of deuterons (D+) to protons (H+) is ~1:15000.
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Elemental Analysis coupled with Isotope Ratio Mass Spec-
trometry (EA-IRMS). Specific deuteronated positions on
the molecules can be characterized by NMR spectroscopy
studies. The effects of deuteronation, if any, can be
delayed or prevented by decreasing the intake of deuter-
ated water or increasing the turnover of organelles and
macromolecules by stimulating autophagy-like mecha-
nisms.
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