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Abstract
Background: Phytophthora infestans is a devastating oomycete pathogen of potato production
worldwide. This review explores the use of computational models for studying the molecular
interactions between P. infestans and one of its hosts, Solanum tuberosum.

Modeling and conclusion: Deterministic logistics models have been widely used to study
pathogenicity mechanisms since the early 1950s, and have focused on processes at higher biological
resolution levels. In recent years, owing to the availability of high throughput biological data and
computational resources, interest in stochastic modeling of plant-pathogen interactions has grown.
Stochastic models better reflect the behavior of biological systems. Most modern approaches to
plant pathology modeling require molecular kinetics information. Unfortunately, this information is
not available for many plant pathogens, including P. infestans. Boolean formalism has compensated
for the lack of kinetics; this is especially the case where comparative genomics, protein-protein
interactions and differential gene expression are the most common data resources.

Background
Control and management of plant diseases and the iden-
tification of factors that contribute to the spread a given
plant pathogen attack are at the basis of phytopathology.
Mathematical models and computational simulations
have been used, along with molecular and physiological
approaches, to solve these and other issues.

In the early 1990s the use of stochastic models in plant
pathology was reviewed [1,2], mostly focused on epidem-

ics. In this work we update topics not fully covered in pre-
vious reviews as well as associated experimental
approaches that characterize the systems biology era [3].
Most of the review will focus on the Phytophthora infestans
- Solanum tuberosum pathosystem, but its discussion will
be general enough as to be applicable to any other plant
pathogen system. A brief discussion of boolean networks
and how this approach could drive the modeling of the
compatible interaction between P. infestans and S. tubero-
sum is also introduced.
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Experimental approaches to the study of molecular plant-
pathogen interactions in Phytophthora species
Plants use various strategies to resist infection by a partic-
ular pathogen [4]. These strategies are part of the plant's
innate immune system and can be grouped into two
broad categories [5]. The first recognizes common patho-
gen-associated molecular patterns (PAMPs), and acts as
an early plant warning to potential infection [6]. This rec-
ognition leads to the induction of a basal plant defense,
which in some cases includes a hypersensitive response
(HR). The HR is characterized by the rapid death of cells
surrounding the infected region and commonly leads to a
broad spectrum plant response, the Systemic Acquired
Resistance [7].

A second defense system in plants involves pairs of gene
products, an effector molecule from the pathogen and an
associated resistance protein (R) from the host, which rec-
ognizes it. This defense mechanism is highly specific and
is triggered once a given effector is recognized by its asso-
ciated R defense protein [5].

Plants with the capacity for protection from a pathogen
attack are considered as resistants and a pathogen that
lacks the ability to infect it is referred to as avirulent on
that plant [4]. In this case, the host-pathogen interaction
is considered incompatible. On the other hand, when a
compatible interaction occurs, the pathogen becomes vir-
ulent and a plant that is incapable of resisting the attack is
considered non-resistant.

Plant pathogens have developed several strategies to
evade such plant defense responses and to become viru-
lent. For some of these pathogens the evasion mecha-
nisms are at least partially known, as in the case of bacteria
such as Pseudomonas syringae. However, for most plant
pathogen species, these evasion mechanisms are almost
completely unknown. This is the case for P. infestans, the
causal agent of late blight of potato, a disease that affects S.
tuberosum and some other species in the Solanaceae family
[8]. Oomycetes from the genus Phytophthora are plant
pathogens devastating for agriculture and natural ecosys-
tems [9]. For instance, in the United States alone, P.
infestans causes estimated losses that exceed $US 5 billion
annually [10].

Despite its economic importance, the fundamental
molecular mechanisms underlying the pathogenicity of P.
infestans are poorly understood. It was not until recent
years that information crucial to the understanding of its
genomics and infectious mechanisms was accessible to
the research community [11]. For example, in 2006, the
first effort to classify the secretome of plant pathogenic
Oomycetes was carried out by Kamoun et al. Furthermore,
although the general molecular events associated with the

interaction between P. infestans and S. tuberosum were
already known in 1991 [12], it was not until last year
(2008) that all the known molecular and cytological proc-
esses underlying plant-pathogen interactions in various
Phytophthora species were revised [9].

From the biological strategies used so far to study the
processes underlying plant-pathogen interactions, three
are most suitable as basis for a computational systems
biology approach: (a) gene expression, (b) structural and
comparative genomics and (c) protein-protein interac-
tions.

Gene expression
Gene expression approaches constitute a starting point
from which to determine the best strategy for building a
computational model of a plant disease. Host-expressed
molecules give insights into the underlying defense mech-
anisms, whereas identification of the pathogen counter-
parts allows us to ascertain possible mechanisms of attack
and/or avoidance mechanisms used to establish a disease.

Differential expression of particular genes
A common strategy in gene expression analysis is to iden-
tify a particular gene of interest, and then to study or char-
acterize its expression profile in different hosts and/or
treated tissues. For instance, based on the findings that
during the early phases of the interaction between P.
infestans and potato, the genes ipiB and ipiO are expressed
at high levels, Pieterse et al. hypothesized that these genes
played an important role in the early stages of the infec-
tion process [13]. Both genes were isolated and their
expression studied in various host tissues and different
host plants. The results showed that the expression of
these genes was activated in compatible, incompatible
and non-host interactions. In the case of ipiO, it was
revealed that a motif on the promoter region functioned
as a glucose repression element in yeast. This observation
helped to generate hypotheses about its behavior in culti-
vars with different resistance levels. The authors con-
cluded that perhaps a variable nutrient environment
could trigger the expression of ipiO and ipiB depending on
the host and/or the expressing tissue.

Most of the crucial P. infestans protein elicitors known to-
date [14] have also been revealed by this approach. This is
the case for the Avr3a avirulence gene, the first to be
cloned from P. infestans. Subsequently, this gene was the
subject of the first report of cell death suppression from a
filamentous plant pathogen [15,16].

Differential expression of particular genes has also been
used to study Systemic Acquired Resistance (SAR) and HR
in challenged plants [17,18] to test, for instance, the cor-
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relation between the expression of basal SAR marker
genes with resistance to P. infestans [19].

High throughput differential gene expression
This approach focuses in the identification of all the genes
expressed in a cell under a particular condition. Since this
approach allows us to differentiate clearly between the
expression profiles of cells under different conditions, its
application is of special interest in plant-pathogen interac-
tions, allowing us to solve research questions such as:
which genes are expressed in a compatible interaction that
are not expressed in a compatible one? Or, are there any
sub-regulations, positive or negative feed-backs, present
in one case but not the other?

Different techniques such as DNA microarrays [20-23],
serial analysis of gene expression [24,25] and differential
display [26,27] have been used to study high throughput
differential gene expression.

In the case of P. infestans, genes expressed in host cells
challenged by this pathogen have been screened on com-
patible [28-30] and incompatible interactions [31-33],
elucidating important issues about the mechanisms of
interaction with its hosts.

For instance, gene regulation was revealed in a DNA
microarray analysis of 7680 potato cDNA clones, repre-
senting approximately 5000 unique sequences expressed
during a compatible interaction [30]. This work focused
on the role of gene suppression in the compatible interac-
tion, and its profile was obtained from microarray data
evaluated at five time points. From this study, suppression
of genes involved in the jasmonic acid (JA) defense path-
way was revealed [34], as well as a severe down-regulation
of the carbonic anhydrase (CA) gene, responsible for the
reversible hydration of carbon dioxide to bicarbonate.
Further analysis showed that CA was first down-regulated
and then up-regulated during the incompatible interac-
tion, clearly differentiating susceptibility from resistance,
opening questions about the mechanisms that lead to its
rapid suppression and the possibility of a connection
between CA suppression and the overall down-regulation
of the JA defense pathway.

Differential expression has also been studied on the path-
ogen side in P. infestans [35,21,23] and other Phytophthora
species [21,36], revealing differential expression of e.g. the
hsp70 and hsp90 genes, under distinct pathogen develop-
mental stages and pathogenicity structures [37,36].

Although still fragmented, this approach provides a sys-
temic view of the pathogenicity process, considering gene
expression as a network and helping us to develop strate-

gies to control or prevent the disease by manipulation of
either the pathogen or the host.

Structural and comparative genomics
Along with differential gene expression analysis, this is the
most common modern approach to studying plant path-
ogen interactions, mostly due to the proteomic tech-
niques as well as data mining and functional genomics
tools available nowadays.

To date, one nuclear and six chloroplast genomes have
been sequenced and two more nuclear genome sequenc-
ing projects are in progress in Solanaceous species (Addi-
tional file 1). On the pathogen side, five Oomycete
genomes have been sequenced [11] and several studies at
the genome scale have been carried out thanks to the
availability of genomic information on these Oomycetes
[38-40] and their hosts.

Therefore, the possibility of performing comparisons
between different organisms at the sequence level [40] has
allowed agronomically important resistance genes in
potato to be isolated [41], pathogen avirulence genes [42]
and gene families [10] to be identified, and novel proteins
implicated in a given interaction to be identified [43]. For
example, in the case of S. tuberosum, comparative analysis
has revealed a physical co-localization between resistance
loci in tomato, tobacco and pepper [44].

This approach has also revealed how two widely divergent
microorganisms, P. infestans and the human malaria par-
asite Plasmodium falciparum, use equivalent host-targeting
signals to deliver virulence and avirulence gene products
into their hosts [45]. These products have been character-
ized by a particular protein motif, leading to the hypothe-
sis of pathogenicity mechanisms conserved between both
organisms [46]. This motif is the host-targeting (HT) sig-
nal of P. falciparum, centered on an RxLx core, revealed
after the discovery of the RxLR host translocation motif of
Oomycete effectors [47-49]. Owing to the availability of
such data, it has been shown that although Plasmodium
and Phytophthora are divergent eukaryotes, they share
leader sequences, which suggests a conserved machinery
for transport of effector proteins, a finding otherwise hard
to achieve.

Protein-protein interactions
One approach to study protein-protein interactions is by
using yeast two hybrid screening, co-immunoprecipita-
tion [50] or surface plasmon resonance. This is arguably
the most important approach towards a broad under-
standing of any plant pathogen interaction. It enables
some mechanisms for the suppression of host defense in
several organisms, such as the fungal pathogen Septoria
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lycopersici [51] or the Oomycete Phytophthora sojae [52], to
be revealed.

In the case of P. infestans, relevant host defense suppres-
sion molecules have been also identified by this
approach, such as the extracellular protease inhibitors
EPI1 [53], EPI10 - the first protease inhibitor reported in
any plant-associated pathogen, which suppresses tomato
defense by targeting - the P69B subtilisin-like serine pro-
tease [54], and the EPIC family of secreted proteins that
target the extracellular cysteine protease PIP1 (Phytoph-
thora Inhibited Protease 1) [55].

Protein-protein interactions play an important role in rec-
ognition between plant pathogens and their hosts. This
recognition has been studied at two levels: recognition of
the host by the pathogen and recognition of the pathogen
by the host [56,57]. During an interaction, host resistance
(R) and pathogen avirulence (Avr) proteins interact in a
gene-for-gene manner. Proteins encoded by R alleles rec-
ognize the products of corresponding Avr alleles, thus trig-
gering disease resistance. Using an association genetics
approach [58], the P. infestans Avr3a effector was shown to
be recognized in tomato cytoplasm by R3a (a member of
the R3 complex locus on chromosome 11). R3a was iso-
lated by positional cloning the same year [41].

Together, these and other studies [59,23], along with
computational chemistry and/or computational mode-
ling and prediction of protein-protein interactions [60],
provide valuable information about the recognition
mechanisms in S. tuberosum - P. infestans R-Avr interac-
tions and could lead to the identification of metabolic
and/or signaling pathways underlying incompatible inter-
actions.

Quantitative models in plant pathology
In cases where experimental data for a biological system
start to accumulate, it is feasible and convenient to inte-
grate all the information gathered into a quantitative
model. This approach allows us to obtain a mathematical
and networked framework for a descriptive model of the
biological phenomenon [61]. This type of model
strengthens the predictive capacity of future responses, for
instance under different conditions, and it also helps to
broaden our view of the potential interactions that could
take place in any molecular reaction [62].

In order to capture time-dependent dynamic phenomena,
a systems biology approach should allow us to integrate
various ranges of spatial and temporal biological scales, as
well as processing of different signals, genotypic variation
and responses to external perturbations. As seen in the
previous section, typical experiments describing the inter-

action between P. infestans and its hosts are clearly related
to each of these characteristics.

Functional genomics and proteomic approaches produce
the most suitable data for the development of a theoreti-
cal model [61]. For instance, microarray-based differential
expression analysis evaluates expression patterns at differ-
ent times [30], under different conditions [21,33] with
host and pathogen genotypic variation. On the other
hand, gene expression and host targeting of protease
inhibitors work at different levels of signaling and at dif-
ferent spatial and temporal scales [54,53].

Data gathered from such plant-pathogen interaction
approaches, along with the development of interaction,
pathways and metabolism databases [63,64], as well as
standardized systems biology languages [65,66] and in sil-
ico research platforms [67,68], have opened the door to
modern computational model approaches at the molecu-
lar level in several organisms, including Oomycetes.

Predominantly, phytopathologists have used computa-
tional and quantitative modeling approaches to describe
the temporal dynamics of plant diseases. Consistently, the
bulk of the literature written in this field has been focused
on the epidemiology of the disease, so research on the
modeling of plant-pathogen molecular interactions is
under-represented.

Quantitative modeling of plant-pathogen epidemiology
Deterministic approaches
In 1969, Waggoner and Horsfall published Epidem, the
first computer simulation of a plant disease [69]. Epidem
was mainly a simulator of potato and tomato blights.
Since then, models used in the plant-pathogen field have
often belonged to the family of logistic equations.

The fundamental logistic model was proposed in 1963
by VanderPlank [70,71] and it describes the rate at
which a disease spreads over time (Table 1).

Table 1: Solanaceous genome projects.

Species Genome Status reference

Nicotianatabacum mitochondrion Finished [106]
Nicotianatomentosiformis chloroplast Finished [107]

Solanum tuberosum chloroplast Finished [108]
Solanum bulbocastanum chloroplast Finished [109]
Solanum lycopersicum chloroplast Finished [110]

Nicotianasylvestris chloroplast Finished [111]
Atropa belladonna chloroplast Finished [112]

Solanum tuberosum Nuclear In progress 12984*
Solanum lycopersicum Nuclear In progress 9509*

*NCBI's genome project identification number.
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In this model [71], yt is the proportion of diseased tissue
(severity) at time t and λ is the rate of change of diseased
tissue unit in a given unit time. The term (1-yt) indicates
that new infections occur only in non-infected tissue. The
slope of the disease curve depends on the infection rate
(λ) and the inoculum yt. At a higher infection rate, the
curve rise more steeply.

However, this model assumes that a lesion always
remains infectious and also neglects the lag between the
time at which an infection occurs and the time it becomes
infectious (latent period). As such, the so-called general-
ized model considers both a latent period (p > 0) and an
infectious period (i) [71,72] (Table 1). These values can
range from p < 7, i<65 days in Puccinia recondita [73] to p
< 2, i<8 days in P. infestans [74].

Other relevant characteristics of a plant disease are its spa-
tial pattern and the arrangement of disease entities (i.e.,
spores). The spatial patterns are influenced by dispersal of
disease entities [75]. In cases where spore dispersal is not
carried out directly from infected tissue but by environ-
mental factors such as wind, a model assuming a constant
source of inoculum, such as a monomolecular model, is
more appropriate [71].

In this case the infected tissue is not part of the source, so
the shape of the disease curve depends solely on the rate
of infection. In the case of Phytophthora, five potential
mechanisms of dispersal have been described for some
major species [75]; for P. infestans, P. cinnamoni and P.
syringae, a real mechanism of dispersal could be repre-
sented correctly by this model.

Some other models have been derived from the general
logistic model. For instance, the Gompertz model is simi-
lar to the general logistic one and can be seen as a logarith-
mic form of it. When different data sets are compared, it is
appropriate to use a model that allows us to make such
comparisons; for those cases a Weibull model should be
considered [76].

The spread of disease has also been modeled [77,78].
Since the early 1980s, the epidemic wave velocity of P.
infestans has been measured by several means [79-82].

Although widely used, deterministic models do not repre-
sent the underlying biological process in a proper way.
Spore germination is a good example of a stochastic proc-
ess; for instance, examination of a single spore will reveal
stochastic behavior, which can only be inferred by the
examination of a significant number of units. Thus, in
these cases, the process under study is better described by
a probability function [2].

Stochastic approaches
Stochastic modeling of epidemics has been studied since
the early 1960s. Most of the stochastic approaches carried
out at that time were also concerned with the progress of
the infection over time, represented by the so-called gen-
eral stochastic epidemic model [83]:

Where (τ, τ + δτ) is the time interval. Here I(τ) represents
the number of infectives, S(τ) the number of susceptibles
and R(τ) the number of removals at time τ ≥ 0. The
removal of infected tissue is also considered probabilistic
and it will occur with the following probability [83]:

in the same time interval, where γ > 0; χ = 0, 1, ..., N,. Since
a given removal does not depend on previous ones, a
removal is considered independent [83]:

Transition probabilities are given as [83]:

In non-stochastic models, stochasticity can be approached
by adding randomness to state variables. For instance,
Vanderplank's model was used in the description of the
zucchini yellow mosaic virus disease [84]. In this case, sto-
chasticity was achieved by adding a "brownian motion term
to the growth rate parameter". As the authors stated, a signif-
icant difference between a stochastic and a deterministic
version of the same model can be seen only if large data
sets are employed. This observation could explain why in
recent years, when biological data acquisition has grown
faster than ever, the use of stochastic models has become
more popular.

Stochastic modeling in plant pathology has also been
applied to processes at different levels of biological organ-
ization, such as at the organ level, crops [85], spatial pat-
terns, evolution [2] and aerial spread [86]. For instance,
the spatial spread of disease in race-specific and race-non-
specific cultivar mixtures was studied using a spatially
explicit stochastic model [87]. This model was based on the
assumption that disease can be significantly higher in
monocultures than in cultivar mixtures and it only con-
sidered stochastic variation of spore dispersal at constant
sporulation rate, although there exist many other sources
of stochastic variation (such as genotypic variation) [2].

No matter whether they are stochastic or deterministic,
the models described above have been focused on higher

Pr ( ) , ( ) | ( ) , ( ) ( )I S I Sτ δ χ τ δ γ τ χ τ γ β δ ϕ δτ χγ τ τ+ = + + = − = ={ } = +1 1

Pr ( ) , ( ) | ( ) , ( ) ( )I S I Sτ δ χ τ δ γ τ χ τ γ γ δ ϕ δτ χγ τ τ+ = − + = = ={ } = +1

Pr ( ) , ( ) | ( ) , ( ) ( )I S I Sτ δ χ τ δ γ τ χ τ γ γχδ β δ ϕ δτ τ χγ τ τ+ = + = = ={ } = − − + +1

P I S I i S s N iχγ τ τ χ τ γ( ) Pr ( ) , ( ) | ( ) , ( )= = = = = = −{ }0 0
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scales of plant pathogen interactions, such as the popula-
tion, organ or ecological level. Nevertheless, in any plant-
pathogen disease, the molecular level of the interaction
(i.e., protein-protein, protein-DNA, regulatory and meta-
bolic network regulation) is intrinsically involved and
surely accounts for much of the variation observed at
other levels. Therefore, genetic processes in an organism
can be seen as networks that bridge the gap between genotype
and phenotype [88]. A good example of this situation can
be found in the collective behavior of bacteria in Quorum
Sensing (QS) mechanisms.

QS is a common strategy used by several plant-pathogenic
bacteria to assess local population density and/or physical
confinement. In a recent publication, a model describing
the Ti plasmid quorum-sensing gene network was con-
structed [89]. It was shown that it could operate as an "on-
off" gene expression switch that is sensitive to the environ-
ment, allowing the question about how bacteria really
behave or respond to be answered in QS.

Although this topic is absent in some plant-pathogen
organisms, such as P. infestans, the characteristics of quan-
titative modeling of molecular mechanisms could eluci-
date several questions in phytopathology.

In silico modeling of plant-pathogen molecular 
interactions
Plants resist pathogen attacks by shifting their defense
mechanisms, as reflected in quantitative and kinetics
enhancements [62]. The mechanism that controls host
defense activation consists of a highly interconnected net-
work, in which host defense genes interact with each other
as well as with effector proteins present in the cell [90-92].
The availability of high-throughput gene expression and
proteomics data has generated an unprecedented oppor-
tunity for comprehensive study of these types of biologi-
cal networks [89,93].

Since an important phase in host-pathogen interactions
involves protein-protein recognition [94,91], efforts to
elucidate networks of such interactions are of special
interest in phytopathology. For example, a whole-genome
computational strategy to infer protein interactions was
applied to ten pathogens, including species of Mycobacte-
rium, Apicomplexa and Kinetoplastida [91]. This work
started with the identification of pairs of matching pro-
teins known to interact between the host and the patho-
gen, and by assessing the likelihood of this interaction by
means of structural modeling, expression properties and
subcellular location. As a result, an enriched candidate set
of proteins is obtained, suitable for experimental study.

With the current genome sequence information for sev-
eral Phytophthora genomes (Additional file 1) and those

under sequencing [11,95], this approach could be appli-
cable to a Phytophthora-Solanaceae model and thus
enhance our limited knowledge about the molecular
interactions in these genera.

Another good theoretical framework to start working with
is a space of interconnected operators such as a boolean net-
work (Figure 1). Boolean networks present some advan-
tages when compared to similar strategies such as hidden
Markov models [96,97]. For instance, it is possible to per-
form a simulation while "avoiding the statistical basis
around them, provides the option to perform simpler
computational simulations, insert additional regulators
or quantitative and biochemical data parameters into the
model when available" [98].

Towards a boolean description of the P. infestans - 
Solanum tuberosum interaction
Although clustering analysis can be used to infer gene
function from expression data, the detailed interaction
between genes within or between clusters cannot be
deduced by this approach [99]. In order to deduce such
interactions, data from differential expression analysis can
be represented in a boolean formalism. This representa-
tion can be achieved in a typical boolean binary form,
where repression and/or induction of a given gene can be
expressed by an on or off switch and thus translated into a
network structure and simulated by computational analy-
sis. This approach has been successfully implemented in
the simulation of plant defense signaling networks in Ara-
bidopsis thaliana in response to different treatments with

Boolean formalismFigure 1
Boolean formalism. Adapted from [98] The most frequent 
types of boolean operators are the buffer, NOT, AND and 
OR gates. Tables adjacent to each of these gates are known 
as "true" tables, where "a" and "b" represent the input (or 
stimuli) and R the output (or response).
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salicylic acid, jasmonic acidand ethylene [98] (figure 2).
For example, genes up-regulated to the same level in both
treatments can be expressed by an OR operator, as in the
case of phyA and PhyB in figure 2, thus leading to different
possible initial states (input domains) as represented by
panels A and B in the same figure. Data from differential
expression analysis can also be represented by three possi-
ble boolean states (Table 2). This approach has been suc-
cessfully used in the inference of gene regulatory networks
[100] where "-1" was also introduced to address the nega-
tive interaction between components in the network.
Experimental information on the compatible interaction
between P. infestans and S. tuberosum is being approached
by our laboratory using a similar strategy, in order to
hypothesize the network space of carbonic anhydrase in
this interaction.

This approach can also be used in systems lacking biolog-
ical information, by gathering data common to other
organisms or from related species. This possibility opens
the door to implementation in other species of Oomyc-
etes where lack of information is typical.

Conclusion
The idea of the stochastic modeling of biological systems
is not new, although traditionally, the mathematical
frameworks used to represent and study these processes
have been deterministic. This situation can be explained
by taking into consideration the fact that quantitative and
computational modeling usually require the availability
of important computational resources. These resources
increase proportionally with the number of variables
involved in the model; then apart from restrictions on the

Boolean representation of a signaling networkFigure 2
Boolean representation of a signaling network. Adapted from [98] Boolean representation of the signal transduction 
network controlling the plant's defense response against pathogens in Arabidopsis thaliana, represented by a series of output 
genes selected from microarray data. The activated switches are represented in yellow. Diode symbols in yellow indicate the 
induced genes. Empty squares correspond to no significant expression. A and B represent two of the various possible outputs 
given the input.
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availability of biological information included in the
model, there also exist restrictions on the availability of
computational resources to perform a given simulation.
In recent years, computational resources have become less
restrictive. Moreover, stochastic processes are probabilistic
in nature and thus require the use of more data as confi-
dence in calculations depends on them. More data means
more calculations and interconnections between varia-
bles. Thus, the availability of computational resources and
biological data has restricted the use of stochastic
approaches for decades, not only in plant pathology, but
in biological processes in general.

Any top level biological observation implies an underly-
ing molecular process, which is not isolated from its envi-
ronment. This situation has always been evident to plant
pathologists, as reflected in the conversion of environ-
mental factors such water or humidity into model varia-
bles. Epidemiological research will find molecular plant-
pathogen interaction models an important tool for
describing disease spread and dynamics from its roots. In
turn, molecular plant pathogen interactions cannot be
modeled in isolation from environmental variables,
largely analyzed by deterministic approaches since the
early 1960s. Therefore, in order to reflect the real biologi-
cal phenomena, it is crucial to take this information into
account when a molecular interaction is considered.

Biological information that implies a networked structure
can be represented by a boolean formalism. This
approach avoids the immediate necessity of chemical
kinetics and the use of sets of equations (for example dif-
ferential equations) to run a simulation. Thus, boolean

networks are a viable and ideal strategy for the computa-
tional modeling of protein-protein interactions, meta-
bolic networks and differential expression data available
today for organisms for which molecular kinetic informa-
tion is not available.

To date, differential gene expression data, protein-protein
interaction and functional comparative analysis represent
the only information available, not only for the majority
of Oomycetes and their hosts but also for several other
organisms. Here we argue that, due to the type of informa-
tion available - although hidden Markov models, neural
networks and flux balance analysis have recently been
used - a boolean representation of plant-pathogen interac-
tions between P. infestans and S. tuberosum is one of the
most suitable approaches for computational modeling;
an ongoing effort in our laboratory, based on microarray
data for a compatible interaction between these organ-
isms. Once available, boolean networks will allow kinetic
information to be put back into the model and thus com-
plement it with new information as it becomes available.

Quantitative representation and computational simula-
tion of biological data is an important tool for under-
standing complex biological networks and interactions.
To date, the availability of efficient algorithms, biological
information and computational resources have opened
the door to new insights into the analysis of such informa-
tion. Bioinformatics, systems biology and its most repre-
sentative tool, computational modeling, allow us to study
complex plant pathogen interactions in a way unreacha-
ble to scientists two decades ago. Understanding of plant-
pathogen interactions at the deterministic and stochastic,

Table 2: Boolean representation of defense-related genes expressed during a compatible interaction between P. infestans and S. 
tuberosum. 

Gene name 6 h 12 h 24 h 48 h 72 h

Carbonic anhydrase 0.6 -1 0.6 -1 0.5 -1 0.3 -1 0.3 -1
Proteinase inhibitor II 0.9 0 1.1 0 0.5 -1 0.5 -1 0.4 -1

Peroxiredoxin 1.0 0 0.8 0 0.7 -1 0.7 -1 0.7 -1
2-Cys peroxiredosin 1.0 0 0.9 0 0.6 -1 0.6 -1 0.5 -1
Proteinase inhibitor I 1.0 0 0.9 0 0.6 -1 0.9 0 0.6 0
Superoxide dismutase 0.9 0 0.8 0 0.8 0 0.7 -1 0.7 -1

Peroxidase 0.8 0 0.9 0 0.9 0 0.8 0 0.6 -1
Aspartic proteinase inhibitor 1.7 1 1.0 0 1.2 0 1.1 0 0.7 -1
Cystein proteinase inhibitor 1.5 1 1.9 1 1.1 0 1.2 0 0.6 -1

Cysteine protease 1.0 0 1.4 0 1.3 0 1.4 0 2.0 1
Peroxidase 1.2 0 1.3 0 1.3 0 1.4 0 2.5 1

Catechol oxidase 1.5 1 2.4 1 1.4 0 1.8 1 2.5 1
Catalase 1.4 0 1.7 1 1.9 1 2.3 1 3.3 1

Glutathione reductase 1.8 1 1.8 1 1.6 1 2.3 1 3.0 1

Adapted from [30]. Inductions, quantified as ratios greater than 1.5-fold, are represented in bold font. Repressions, quantified as ratios lower than 
1.5-fold, are represented in bold and italic font. Grey columns contain the boolean representation for each gene expression level. Inductions here 
are represented by 1, repressions by -1 and non-significant expression by zero. These boolean values can further be formalized and simulated into 
a computational model.
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molecular and population levels requires a holistic
approach, where any piece of available information is
important. Today we are facing an integrative era of bio-
logical information, which approaches biological phe-
nomena not from their individual parts but from their
interactions. Without a doubt, this approach reflects bio-
logical reality in a more convenient and realistic way, but
it also brings new challenges as well as the necessity for
new tools, which cover not only the biological sciences
field but also engineering and mathematics.
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