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Abstract

Background: Cells are open complex thermodynamic systems. They can be also
regarded as complex engines that execute a series of chemical reactions. Energy
transformations, thermo-electro-chemical processes and transports phenomena can
occur across the cells membranes. Moreover, cells can also actively modify their
behaviours in relation to changes in their environment.

Methods: Different thermo-electro-biochemical behaviours occur between health
and disease states. But, all the living systems waste heat, which is no more than the
result of their internal irreversibility. This heat is dissipated into the environment. But,
this wasted heat represent also a sort of information, which outflows from the cell
toward its environment, completely accessible to any observer.

Results: The analysis of irreversibility related to this wasted heat can represent a new
approach to study the behaviour of the cells themselves and to control their behaviours.
So, this approach allows us to consider the living systems as black boxes and analyze
only the inflows and outflows and their changes in relation to the modification of the
environment. Therefore, information on the systems can be obtained by analyzing the
changes in the cell heat wasted in relation to external perturbations.

Conclusions: The bioengineering thermodynamics bases are summarized and used to
analyse possible controls of the calls behaviours based on the control of the ions fluxes
across the cells membranes.

Keywords: Entropy generation, Exergy, Irreversibility, Living systems, Medicine and
biochemistry thermodynamics, Membrane transport

Background
Nature, from a physical, biological, chemical and mathematical point of view, is a com-

plex system, while from an engineering point of view, it is the “first” engineer! In par-

ticular, cells can be modelled as an adaptive thermal and chemical engines which

convert energy in one form to another by coupling metabolic and chemical reactions

with transport processes [1–5], by consuming irreversibly [6–8] free energy for thermal

and chemical processes, transport of matter, energy and ions.

Energy is a thermodynamic property of any system in relation to a reference state,

which changes during any process, while its total amount remains constant in relation

to the universe, considering it as the system together with its environment. In cells,

many processes such as replication, transcription and translation need to convert mo-

lecular binding energy, chemical bond hydrolysis and electromagnetic gradients into
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mechanical work, related to conformational changes and displacements [9]. The bio-

mechanical analysis of DNA has pointed out the connections among forces, thermody-

namics, nano-mechanical and electromagnetic behaviour of biological structures and

kinetics [10].

Engineering thermodynamics is the science which studies both energy and its best

use in relation to the available energy resources with particular regards to energy

conversion, including power production, refrigeration and relationships among the

properties of matter, including also living matter. So, engineering thermodynamics

can be introduced in the mechanobiological and system biological approach in order

to improve these sciences by analysing the biosystems also from a thermal point of

view: a new engineering science could be considered, the bioengineering thermody-

namics. Indeed, the first law of thermodynamics expresses the conservation of en-

ergy, while the second law states that entropy continuously increases for the system

and its environment and introduces the statistical and informational meaning of

global quantities [11–14].

In this paper we develop the bioengineering thermodynamic of biological cells, with

particular regards to possible control of the cells growth by a control of the ions trans-

port across the cell membrane. To do so, we consider that cells spontaneously ex-

change heat, and this heat is related to their biochemical and biophysical behaviour.

This wasted heat represents the interaction between the cell and its environment, a sort

of “spontaneous communication” towards environment. This interaction is fundamental

to developing a thermodynamic study of the cell. Indeed, cells are too complex to

understand the contribution of each process to the global result, and the study of cells

as black boxes allows us to simplify the analysis by considering only the inflow and out-

flow balances [15]. Moreover, it is easier to have access to the cell environment than to

the living cell itself. These considerations allow us to introduce the bases of the

bioengineering thermodynamic approach introduced in the study of the cells:

1. An open irreversible real linear or non-linear system is considered;

2. Each process has a finite lifetime τ;

3. What happens in each instant in the range [0,τ] cannot be known, but what has

happened after time τ (the result of the process) is well-known (at least it is sufficient

to wait and observe): local equilibrium is not necessarily required;

4. The balance equations are balance of fluxes of energy, mass and ions.

The fundamental quantity used in this analysis is the global entropy [16, 17], related

to systems changes, highlighted as the only effective criterion for spontaneity of change

in any system, with particular regards to the entropy variation due to irreversibility,

named entropy generation [18], which is the result of the global effect of the entropy

variation

1. due to the interaction with the environment

2. within the system itself.

The introduction of entropy generation comes from the need to avoid inequalities:

entropy results as a state function, so nothing is really produced or generated.
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Therefore, entropy is nothing more than a parameter characterising the thermo-

dynamic state, and the term due to irreversibility, Sg, measures how far the system is

from the state that will be attained in a reversible way [12]. It is always Sg ≥ 0.

Recently, it has been highlighted that any effect in Nature is always the consequence

of the dynamic balances of the interactions between the real systems and their environ-

ments [12] and the real systems evolution is always related to the decrease of their free

energy, in the least time [19–21]. So, bioengineering thermodynamics is based just on

two fundamental concepts of physics: interactions and flows. The result is the analytical

formulation of flow-based analysis in thermodynamics, which can play the role of a

“rallying point” of the different modelling approach to biosystems. Indeed, if we con-

sider natural systems we can highlight that they are always open systems, which means

that they can exchange heat and mass with their environment. So, the interaction with

the environment is a fundamental concept for the thermodynamic analysis.

We consider the environment as a thermostat and the system, together with its envir-

onment, is an adiabatic closed system [18]. But, for an adiabatic close system, the total

entropy, defined as:

dS ¼ diS þ deS ð1Þ

it always increases, as a consequence of the second law [18]. In relation (1) dS is the

variation of the total entropy elementary, deS is the entropy variation for interaction be-

tween the open system considered and its environment, and diS is the entropy variation

due to irreversibility, such that:

dS
dt

≥ 0 ð2Þ

Now, we can write the relation (1) as [22]:

dS
dt

¼
Z
V

−∇⋅
Q
T

� �
þ _s˙g

� �
dV ð3Þ

where Q is the heat flow, T is the temperature, V is the volume, t is the time and ṡg is

the density of the entropy generation rate. Now, we consider that the stationary states

of the open system correspond to the equilibrium states of the adiabatic closed system.

Considering the system together with its environment, we are analyzing an adiabatic

closed system, so the entropy variation for the volume considered is maximum at the

equilibrium [23]:

dS ¼ 0 ⇒ −∇⋅
Q
T

� �
þ _sg

� �
¼ 0 ð4Þ

and

∇⋅
Q
T

� �
¼ _sg ð5Þ

This last relation allows us to state that the flows between the open system and its

environment cause the entropy generation rate density, so the interaction between sys-

tem and environment is responsible of irreversibility. But, we cannot state if the cause

of changes is the change of the entropy inside the cell or the fluxes across the cell
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membrane. We can only highlight the relation between changes and fluxes, but this ap-

proach doesn’t allow us to establish if are the fluxes to cause entropy changes or if en-

tropy changes causes fluxes.

Now, considering that the entropy generation rate density can be written as [22]:

_sg ¼
X
k

Jk⋅Xk ð6Þ

where Jk is the flow of the k-th quantity involved in the process considered and Xk is

the related thermodynamic force. Now, considering that:

∇⋅
Q
T

� �
¼ Q⋅∇

1
T

� �
þ 1
T
∇⋅Q ¼

X
k

Jk ⋅Xk ð7Þ

the relation (5) becomes:

1
T
∇⋅Q ¼

X
k

Jk ⋅Xk−Q ⋅∇
1
T

� �
ð8Þ

in agreement with Le Chatelier’s principle [24], for which any change in concentration,

temperature, volume, or pressure generates a readjustment of the system in opposition

to the effects of the applied changes in order to establish a new equilibrium, or station-

ary state. It follows that the fundamental imperative of Nature is to consume free en-

ergy in least time. Any readjustment of the state of the system can be obtained only by

generating fluxes of free energy which entail any process where the system evolves from

one state to another.

Results and discussion
The existence of bioelectric signalling among most cell types suggests a wide field of

applicability of these electro-magnetical signals. Here, we provide bioengineering

thermodynamic theory that suggest how to explain the effects of energy, mass and ionic

flows across cell membranes and, consequently, to control the cell behaviour by a con-

trol of ion fluxes.

Living cells are separated from their environment by the lipid bilayer membrane,

which presents a different concentration of specific ion species on both sides. As a con-

sequence, a charge separation across the membrane is generated by the electro-

diffusion of ions down their electrochemical gradient. These ions move into a negative

(inside the cell) membrane potential of around −70 to −100 mV. The hydrophobic

component of the lipid bilayers behaves as a capacitor dielectric, which maintains the

ionic gradients across the membrane; in some instances, the action of ATP-driven ionic

pumps supports this effect by separating the charges. The cell function is regulated by

the membrane proteins, sensitive to electric field; indeed, changes in the electric field

are transduced into a conformational change that accomplishes the function of the

membrane protein with consequences for the regulation of cell functions. The charged

species, their arrangements, the local field strength, charges and dipoles disposition and

movements can vary with the result of changing the electric field which is tranduced

into a conformational change related to the protein functions themselves [32].

These considerations suggest that control and regulation of the membrane’s electric

field could represent a new approach to therapies against diseases such as cancer. To
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understand how to control the fluxes across the membrane we consider the concentra-

tion of the ions on the opposite sides of the membrane [33]:

coutside ¼ cinside exp
Φoutside−Φinside

RT

� �
ð9Þ

where c is the molar concentration of the chemical species, R is the universal constant

of gas, T is the temperature and Φ is the electric potential energy. As a consequence of

this concentration difference the cell can move the ions, and change the pH inside and

outside its membrane. The ion drift velocity vdrift across the cell membrane can be ob-

tained by using the classical kinetic theory [34] as:

vdrift ¼ Ze
m

φ

d
τdrift ð10Þ

where Ze is the electric charge of the ion, m is the ion mass, ϕ is the electric potential

across the membrane, d is the length of the membrane and τdrift is the mean time be-

tween two collisions [33]:

τdrift ¼ mσ

n Zeð Þ2 ð11Þ

where σ is the electric conductivity. Consequently, an electric current I occurs for each

ion i =H+, Na+, K+, Ca2+, Cl−, Mg2+, etc.:

Ii ¼ niAZievdrift ð12Þ

where A is the mean surface area of the membrane. Now, considering the equivalent

RC electric circuit for a membrane it is possible to state that the resonant frequency

for such a circuit results in (2πRC)−1, where R is the electric resistivity for the ion con-

sidered and C is the membrane capacity.

It follows, that if we want to control the cross-membrane flux we must impact the

current. The easier physical way to interact with a current is to use an electromag-

netic wave of the resonant frequency for the membrane, in relation to the ion consid-

ered, with its amplitude being related to the entropy generation as just obtained in

Ref. [25–30].

In Figs. 1 and 2, it is represented an example of this kind of control. Figure 1 repre-

sents the natural behaviour of cell requirement of energy to grow. Figure 2 represents

the cell requirement of energy by cell to grow when they are inside an electromagnetic

field. It represents the ratio between the variation in percentage of the energy used by a

cancer in a magnetic field (50 μT, 40 Hz) respect the energy used by a cancer outside

of the field, related to the energy used by the cancer outside the field vs the growth of

the cancer in terms of volume growth (ratio between the cancer volume during the

cancer growth and the initial volume). It has been obtained by using the entropy gener-

ation approach described in the following section on methods. It is possible to highlight

how the different ions have different effect. The positive ions determines a decreasing

of the energy used while the negative ion increase it. So the positive ions determine an

opposition to the growth. The more effective ion is Ca2+. It means that a control of cal-

cium ion can determine a control of the volume growth of a cancer. Here, the control

is suggested by the use of an electromagnetic field. The field induces in the cell a

greater use of energy to obtain the same growth.
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Conclusions
Life is an organisational and thermodynamic process that tends towards the maximum

conversion of available energy. The biochemical reactions produce or consume external

metabolites, and they connect internal metabolites, in constant concentrations in the

cells at their steady states. To do so, the cell must exchange energy and matter through

its membrane. The fundamental phenomena used by cells to reach their optimality

consist of a redistributing of the flow patterns through their metabolic network.

By using the bioengineering thermodynamics, it has been highlighted how the differ-

ent ions have different effect on the use of energy by the cell to grow. To do so, a con-

trol of the cells behaviours is introduced. Here, an electromagnetic field is used as a

control system, but other field could be used. Cells inside and outside an electromag-

netic field have been considered. The positive ions determines a decreasing of the en-

ergy used by the cancer, such that the cancer cannot grow as outside the field. On the

other hand, the negative ion increase the use of energy. It means that a control of ions

can determine a control of the volume growth of a cancer. This result can be extended

to all the molecular fluxed across the cell membrane, obtaining a possible bioengineer-

ing thermodynamic approach to control the cancer growth.

Fig. 1 Effect of ions flux control on the energy required by cells to growth in natural conditions

Fig. 2 Effect of ions flux control on the energy required by cells to grow in conditions controlled by
electromagnetic field
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Methods
The approach previously used is based on the following considerations:

1. The energy lost by a system is gained by the environment, consequently, the

information lost by the system is gained by the environment: here the problem is to

codify this information;

2. The environment is completely accessible by any observer, so it is easy to collect

data on the lost energy of any system;

3. The flows cause entropy generation variations, consequently we can evaluate the

entropy generation to obtain information to the flows, even when we are unable to

evaluate the flows themselves;

4. The entropy generation is a global quantity, so we can obtain global information on

the cells, but from a biomedical point of view just the global cells behaviour is the

useful information.

Biological systems are very interesting because they are able to adapt to the variation of

environmental conditions; indeed, cells attain their “optimal” performance by a selection

process driven by their environmental interactions. The resultant effect is a redistribution

of energy, ions and mass flows in their metabolic network, by using regulatory proteins.

The bioengineering thermodynamic approach to biological systems consists in the

analysis of the biological optimization process realized by Nature. It is no more than

the classical and engineering thermodynamic analysis of the steady-state flux distribu-

tion, which, for a cell, are no more than the metabolic flows. So, starting from Equation

(1) and considering the second law for the open systems [18]:

Sg ¼
Zτ
0

_S˙gdt ¼ ΔS−
X

i

Q1

Ti
−
Zτ
0

X
in

Ginsin−
X
out

Goutsout

 !
dt ð13Þ

where Q is the heat exchanged, T is the temperature of the thermal source, s is the spe-

cific entropy, G is the mass flow and τ is the lifetime of the process. But, for any open

system, the entropy balance in a local form results [22]:

∂s
∂t

þ v∇⋅
Q
T

þ
X

i
ρisi

_x˙i− _x˙B
� �� �

¼ vσ ð14Þ

where s = S/m, is the specific entropy, S is the entropy, σ is the entropy production density,

v is the specific volume, Q is the heat flow, ẋi is the relative velocity in relation to the centre

of mass reference, and ẋB is the centre of mass velocity. Now, considering that [22]:

T
ds
dt

¼ du
dt

þ p
dv
dt

−
X
i

μi
dci
dt

du
dt

¼ dq
dt

−p
dv
dt

−vΠ : ∇ _x˙B þ v
X
k

Jk⋅Fk

dq
dt

¼ −v∇⋅Jq

dci
dt

¼ −
1
v
∇⋅Ji þ

1
v

X
j

νijJ j

ð15Þ
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where s is the specific entropy, u is the internal specific energy, v is the specific volume,

p is the pressure, μi are the chemical potentials, ci is the concentrations, T is the

temperature, d/dt = ∂/∂t + ẋB ⋅ ∇, q is the heat per unit mass, Π = P – p I with Π total

pressure tensor, p hydrostatic pressure and I identity matrix of which the elements are

Ijk = δjk = 1 if j = k and 0 in the other cases, a:b = Σijaijbji is the product between two

tensors a and b, Jk = ρk (ẋi − ẋB) is the diffusion flows and Fk are the forces, Jj is the

chemical reaction rate of the j-th chemical reaction and νij are quantities such that if

they are divided by the molecular mass of the i-th component they are proportional to

the stoichiometric coefficients. Now, introducing the electro-chemical affinity Ã = A +

Z Δϕ related also to pH variation and the electric field variation, with Aj = Σkνkjμj, Z

the electric charge per unit mass, ϕ the electrostatic potential, the relation (AA) holds

[25–28]:

Sg ¼
Z
V

dV −
Zτ1
o

v

T 2 Jq⋅∇Tdt−
Zτ2
o

v
X
k

Jk⋅∇
μk
T

0
@

1
Adt−

Zτ3
0

v
T
Π : ∇ _xBdt−

Zτ4
0

v
T

X
j

J jAj þ
Zτ5
0

v
T

X
k

Jk⋅Fk

0
@

1
A ¼

¼ Sg;tf þ Sg;dc þ Sg;vg þ Sg;cr þ Sg;de

ð16Þ
where [25–27]:

1. Sg,tf is the entropy generation due to the thermal flux driven by temperature

difference;

2. Sg,dc is the entropy generation due to the diffusion current driven by chemical

potential gradients, with ~μ = μ + Z ϕ electrochemical potential, μ chemical potential;

3. Sg,vg is the entropy generation due to the velocity gradient coupled with viscous

stress;

4. Sg,cr is the entropy generation due to the chemical reaction rate driven by affinity,

always positive;

5. Sg,de is the entropy generation due to the dissipation due to work by interaction

with the environment;

and τi, i ∈ [1, 5], are the lifetimes of any process and the volume of the cell is evaluated

by a characteristic length, in transport phenomena usually considered the diameter of

the cell approximated as the diameter of a sphere L = (6V/π)1/3 = 2r, with r being the

cell radius;

1. the mean environmental temperature can be assumed as T0 = 310 K and the

mean cell temperature has been estimated to be T0 + ΔT. The quantity ΔT

would be experimentally evaluated for different cells lines in relation to their

metabolism;

2. the internal energy density results in u = 3.95 × 107 Jm−3, being calculated as the

ratio between the ATP energy, U = 3 × 10−7 J and the mean value of the cell

inside the human body, V = 7600 μm3. It must be emphasized that this is an

approximation because the cell volume inside the human body is in the range of

200–15000 μm3;

3. the thermal molecular mean velocity inside the cytoplasm is considered to be = 5 ×

10−5 m s−1;
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4. the membrane volume is calculated with Vm ¼ 4
3πr

3‐ 43π r‐deð Þ3 ¼ 4
3πr

3‐ 43π r‐0:2rð Þ3
¼ 0:992V being de = 0.2 r;

5. the chemical potential gradient can be approximated through the ratio between the

mean value of the chemical potential μ = 1.20 × 10−9 J kg−1 and the membrane

length dm = 0.01 μm, with the mean density being ρ = 1000 kg m−3;

6. the viscosity is taken to be 6.91 × 10−3 N s m−2;

7. η ~ 2.07 × 10−3 N s m−2 at 30 °C;

8. ẋB is set as 3.0 × 10−6 m s−1;

9. τ1 is the time related to the thermal flow driven by temperature difference. It can

be assessed considering that the time constant of the thermal transient for heat

conduction is τcv ≈ pcV/(hA) with ρ ≈ 1000 kg m−3 density, V the cell volume, A

the external cell surface, c ≈ 4186 J kg−1K−1 specific heath, and h the convection

heat transfer coefficient evaluated as: h ≈ 0.023Re0.8Pr0.35λ/L,where λ ≈ 0.6 W m−1K−1

of heat conductibility, L the characteristic dimension of the cell (here we have

considered the diameter), Re ≈ 0.2 the Reynolds number and Pr ≈ 7 the Prandtl

number. The process would have occurred in a time τ1 ≈ 5 τcv. For human cells this

value can be considered in the range 15–269 ms;

10. τ2 is the time related to the diffusion current driven by chemical potential

gradients. It can be evaluated as τ2 ≈ d/D, with d = 0.01 μm, i.e., the length of the

membrane, and D being the diffusion coefficient. Considering that the diffusion

coefficient of glucose is approximately 10−9 m2s−1 it follows that τ2 ≈ 10 s;

11. τ3 is the time related to the velocity gradient coupled with viscous stress. This time

can be evaluated as the propagating time of a mechanical wave on the surface of

the cell τ3≈ 2πr
c with c ~ 1540 m s−1 the sound velocity, considered to be the same in

biological tissue;

12. τ4 is the time related to the chemical reaction rate driven by affinity and it can be

evaluated considering the magnitude order of a chemical reaction in a cell (~10−7

mol s−1l−1). Moreover, we consider that the moles number is proportional to the

density of the chemical species (for glucose 1540 kg m−3) and the volume of the cell

itself. It follows that this time is in the range 17–1283 ns;

13. τ5 is the time related to the dissipation due to work by interaction with the

external forces. It depends on the interaction considered;

14. L is a characteristic length, introduced as usually done in transport phenomena.

An experiment has been developed to obtain also a direct proof [31]. Therefore the

spontaneous heat exchanged by the cell represents the interaction or the spontaneous

communication between the cell and its environment. The proposed thermodynamic

theory predicts that the temperature difference between cells with distinct metabolic

characteristics can be amplified by an altered interaction with the external environ-

ment, due to the entropy generation term related to the interaction of the system with

the external fields. The experiments carried out on cells exposed to low frequency elec-

tromagnetic waves consolidate the thermodynamic approach. Indeed, through infrared

thermography an adimensional number, maned thermal dispersion index, was evalu-

ated. This adimensional number represents the inability of the cells to fit their thermal

power to environmental changes. Primary fibroblasts display a high dispersion index,

with a maximal value of 800 % vs NIH3T3 immortalized line, which means that the
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primary fibroblasts adjust more efficiently their thermal production or dissipation than

the NIH3T3 cells. This significant difference implies that, when exposed to selected en-

vironmental conditions, transformed cells dissipate heat more slowly than their normal

counterpart. The results of this experimental approach demonstrate that selecting en-

vironmental conditions it is possible to appreciate distinct cellular phenotypes; these

differences can be evaluated by thermal dispersion patterns measured by infrared

thermography. The experiment confirmed the bioengineering thermodynamics theoret-

ical results.

The results obtained can be improved by considering other approach to bioengin-

eering thermodynamics devoted to the study of organization in living systems and by

linking each others. Indeed, evolution over the long term requires a constant gener-

ation of new alternative forms, a biological behavior named mutation [35]. The co-

operative effect of mutation and selection consists in different processes on different

time scales:

1. Microevolution: changes within a natural populations, in the composition of

populations due to mutation and natural selection. It occurs on a time scale of

generations, it represents an adaptive change;

2. Macroevolution: changes between populations, in the composition of lineages due

to speciation and extinction. It occurs in a geological time scale.

Macroevolution has its origin in microevolution as the result of natural selection

acting on genotypic and phenotypic variation [35–38]. These natural processes can

be described by introducing mathematical models, based on two thermodynamic

actions [35, 39]:

1. The acquisition of resources from the external environment and its conversion into

energy storage;

2. The transformation of the metabolic energy into useful work.

The bases of these processes is the interaction between bio-system and environment

[40]. This brings to non equilibrium states, and the mathematical formalisms developed

to the biosystems analysis was the dynamical systems, based on the studies of Bowen

[41], Ruelle [42] and Sinai [43], who provided new perspectives in the analysis of far

from equilibrium systems by the discovery of certain connections between non-

equilibrium statistical mechanics and the ergodic theory of dynamical systems. In this

context the fundamental concept is the entropy and just this concept represents the

link between the dynamical systems approach and the thermodynamic approach here

developed. Indeed, following Ruelle [44], considering a classical system with isokinetic

time evolution described by the equation:

d
dt

p
q

� �
¼ ξ−αp

p=m

� �
⇔

dx
dt

¼ Fξ xð Þ ð17Þ

with
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x ¼ p
q

� �
and Fξ xð Þ ¼ ξ−αp

p=m

� �
ð18Þ

p∈RN and q∈RN momentum and position respectively, ξ a nongradient time independ-

ent force, m mass and (−αp) the isokinetic thermostat mathematical expression with α

defined as:

α xð Þ ¼ p⋅ξ qð Þ
p⋅p

ð19Þ

so that [44]:

d
dt

p⋅p
2m

� �
¼ 0 ð20Þ

Under these conditions Ruelle defined the entropy increment as [44]

S ξþ Δξð Þ ¼
Z∞
0

dt
Z t
−∞

dτρξ ∇x dx∘f t−τξ0

� �
⋅δτF xð Þ

� �
Φ xð Þ ð21Þ

with δτF is a time-dependent small perturbation of F, ρξ ∇x dx∘f t−τξ0

� �
⋅δτF xð Þ

� �
prob-

ability distribution, fξ
t − τ the solution of the equation (18) at the time t-τ corresponding

to the initial conditions ξ0, Φ(x) = (N - 1)α. Then, Denbigh [18, 45] expressed the fun-

damental processes of living systems, introducing an entropy approach:

dS ¼ dSint þ dSext ð22Þ

where dS is the total entropy elementary variation, dSint is the entropy elementary pro-

duction within the system due to its metabolism of ingested exergy and dSext is the en-

tropy exchange with the environment. Entropy is a path independent state function,

and the overall reaction entropy ΔSR can be evaluated by the macroscopic reaction stoi-

chiometry between external metabolites:

ΔSR ¼
Xn
i¼1

piΔSi ¼
Xn
i¼1

pi
Xk
l¼1

νlsli ¼ c
Xn
i¼1

pi lnpi ð23Þ

where ΔSi = − c ln pi is the entropy of reaction, sli = (hli – gli)/T, with hli molar enthalpy

and gli Gibbs molar energy, are the molar entropies of the k reactants and products, νl
are the stoichiometry coefficients, pi is the probability of the i-th mode and c is a con-

stant related to the numbers of elementary modes and on their reaction entropies. It

represents the state of the fully evolved metabolic network [46]. When the living sys-

tems increase in organization, they increase their entropy and, far from equilibrium,

they have a high exergy content [47]; indeed, considering two systems with the same

mass and the same chemical composition, the one, that has a large amount of

organization, has also higher exergy content. During their evolution, the living systems,

and also ecosystems, increase their structure in organization, which is a working in-

formation useful for resilience and integrity, and also their efficiency in converting

exergy to entropy, in order to reduce the applied exergy gradient, while their internal

entropic state continue to decrease [48, 49]. Then, while dSint is always positive

defined (dSint ≥ 0), dSext can have any sign.
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The inner entropy generation rate σ is defined as the local first time derivative of the

[50] internal component of the entropy:

σ ¼ dSint
dt

ð24Þ

If the irreversible processes are sufficiently slow, the Gibbs equation can be applied

to any subsystem [50]:

TdS ¼ dU þ pdv−
X
i

μidni ð25Þ

and the entropy can be expressed in terms of fluxes Ji and conjugated generalized

forces Xi [50]:

Tσ ¼
X
i

J iXi ð26Þ

The non-equilibrium stationary states, which are the states whose variables are inde-

pendent of time, play a fundamental role in the irreversible processes. After a charac-

teristic time, the system achieves the equilibrium if no restraints are imposed on it,

while if a number of constant restraints are imposed, a steady state is attained [50]. In

any steady state the total entropy is independent of time, consequently:

dS
dt

¼ dSint
dt

þ dSext
dt

¼ 0⇒
dSext
dt

¼ −
dSint
dt

ð27Þ

but

dSint
dt

≥0⇒
dSext
dt

≤0 ð28Þ

and it is possible to argue that the entropy generation rate in a stationary system must

be compensated by the liberation of entropy to the surroundings. This means also that

non-equilibrium steady states cannot occur in isolated systems because these last sys-

tems do not allow exchange of entropy between the systems and the surroundings [8].

Prigogine proved that [51–53]:

dσ≤0⇒
d2Sint
dt2

≤0 ð29Þ

On the use of the Prigogine’s results there is little doubt that a mature organism may

reached a stationary state; indeed, the homeostasis of all self regulating systems is inter-

preted as tendency to return from a perturbed state to that of highest stability compat-

ible with biological constraints [50].

Moreover, considering an irreversible and open system, it is composed by N elem-

entary volumes. Every i-th element of this system is located by a position vector xi,

it has a velocity ẋi, a mass mi and a momentum pi =miẋi. The total mass of the sys-

tem is m = ∑imi and its density is ρ = m/V with V = ∑iVi total volume. The position

of the centre of mass is xB and its velocity results ẋB = ∑imiẋi/m, while the diffusion

velocity is ui = ẋi − ẋB. The total mass of the system is conserved, so the following

relation _ρ þ ρ∇⋅ _xB ¼ 0 is satisfied together with its local expression _ρi þ ρ∇⋅ _xi ¼ ρΞi, re-

lated to the density of the i-th elementary volume of density ρi and a source Ξ generated
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by matter transfer, chemical reactions or thermodynamic transformations. For an open

system, as just described in macroscopic way, the equation of the entropy balance is [22]:

∂s
∂t

þ v∇⋅JS ¼ _s

_s˙ ¼ vσ

ð30Þ

where s = S/m, is the specific entropy, S entropy, σ the density of the entropy generation

rate, v the specific volume and JS is the entropic flux defined as:

JS ¼
Q
T

þ
X

i
ρisi

_x˙i− _x˙B
� �

ð31Þ

with Q heat flux.

Any dynamical state of this system can be described by the 3N canonical coordinates

{xi ∈ R3, i ∈ [1,N]} and their conjugate momenta {pi ∈ R3, i ∈ [1,N]}. The 6N − dimen-

sional space spanned by{(pi,xi), i ∈ [1,N]} is the phase space Ω of the open system con-

sidered. Any point qi = (pi,xi), qi ∈ R6N in the phase space Ω, represents a state of the

entire N − elements system [54]. Any family {ξ(t), t ∈ R} is called stochastic process in

the phase space Ω and it can be represented by a family of equivalent classes of ran-

dom variables ξ(t) on Ω, {γ(σ(t)) : t ∈ R}. The point function γ(q(t)) is called trajectory

of the stochastic process ξ(t): a description of a physical system in terms of a trajectory

of a stochastic process corresponds to a point dynamics, while its description in terms

of equivalent classes of trajectories and their associated probability measure corre-

sponds to an ensemble dynamics [55]. So it is considered a non-equilibrium system

moving in the Ω-space between two states, which are in two elementary cells of a given

partition of the phase space. We use the concept of path of classical mechanics: if the

motion of the system is regular, or if the phase manifold has positive or zero Riemann-

ian curvature, there will be only a fine bundle of paths which track each other between

the initial and the final cells [13]. For a system in chaotic motion, or when the Rie-

mannian curvature of the phase manifold is negative, two points indistinguishable in

the initial cell can separate from each other exponentially [54]. Then, between two

given phase cells, there may be many possible paths γk, k ∈ [1,ω] with ω number of all

the paths, with different travelling time tγk of the system and different probability pγk
for the system to take the path k, called path probability distribution [56–59]. It is con-

sidered an ensemble of a large number L of identical systems, all moving in the phase

space from two cells with ω possible paths, and Lk systems travelling on the path γk.

The probability pγk that the system take the path γk is defined as usual by pγk = Lk/L. If

ωk = 1 then pγk = 1. By definition, pγk is the transition probability from the two states

considered. These trajectories must be the paths minimizing action according to the

principle of least action [54]. Since 1962, Jaynes argued that Gibbs’ formalism of equi-

librium statistical mechanics could be generalised in a statistical inference theory for

non-equilibrium systems [60]. Jaynes developed the non-equilibrium statistical me-

chanics for the stationary state constraint on the basis of maximum entropy; his ap-

proach consists of maximising the path Shannon information entropy written for the

path, SI = − Σγpγ ln pγ, with respect to pγ of the path γ, with the probability subject to

the actual constraints. According to Shannon, ‘the information entropy is the loga-

rithm of the number of the outcomes i with non-negligible probability pi’, while in
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‘non-equilibrium statistical mechanics it is the logarithm of the number of micro-

scopic phase-space paths γ having non-negligible probability pγ’ [60]. Jaynes’ approach

consists of finding the ‘most probable macroscopic path realised by the greater num-

ber of microscopic paths compatible with the imposed constrained’ [60], in analogy

with the Boltzmann microstate counting: ‘paths rather then states are the central ob-

jects of interest in non-equilibrium systems, because of the presence of non-zero

macroscopic fluxes whose statistical description requires considering the underlying

microscopic behaviour over time’ [60] which implies that ‘the macroscopic behaviour

is reproducible under given constraints’ and it is ‘characteristic of each of the great

number of microscopic paths compatible with those constraints’ [60]. Following this

approach and these considerations, the statistical expression of the entropy gener-

ation has been written as [56–59]:

Sg ¼ −kB
X
k

pγk lnpγk ð32Þ

It can be also interpreted as the missing information necessary for predicting which

path a system of the ensemble takes during the transition from a state to another.

In the theory of probability the stochastic order is introduced. Two random vari-

ables X and Y are in stochastic order if there exists a random variable Z and functions

ψ1 and ψ2 such that X = ψ1(Z) and Y = ψ2(Z), with ψ1(Z) ≤ ψ2(Z) [61]. Now, the set of

paths {γk, k ∈ [1,ω]} is considered, with ω number of all the paths between two

thermodynamic states, represented by two points in the phase space. It is possible to

define a stochastic order among the paths, saying that a path γi is stochastically

smaller than a path γj if its probability pγi is smaller that the probability of the other

path, pγj [13]:

γ i<STγ j if pγi < pγj ð33Þ

So, the probability of a path can be expressed in term of the first order differential of

the entropy generation respect to the probability itself, as follows [13]:

pγi ¼ exp −
1
kB

∂Sg
∂pγi

−1

 !
ð34Þ

But, in the analysis of the complex systems, it was highlighted how chaotic and fractal

behaviour are very widespread in nature: any numerical evaluation based on accessible

states in the phase space is incomplete because of the rejected, singular or inaccessible

points [56]. The basis of the incomplete information is that a part of information on

complex system may not be completely accessible. The consequence is that irreversibil-

ity is the physical model by which thermodynamic phenomena can be completely de-

scribed [54]. The related information is incomplete because, for complex systems, it

occurs that ∑j = 1
ν pj = θ ≤ 1, with ν number of accessible or accountable states, smaller of

the total number of states, and θ incompleteness of the treatment and linked to the na-

ture of the system, consequence of the partial knowledge of the dynamics or of the in-

accessible states of the system itself [54]. Non-statistical mechanics replaces the

complete probability normalisation by:
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Xν
j¼1

pϑj ¼ 1 ð35Þ

with ϑ incompleteness parameter such that ϑ = 1 if the probability distribution is

complete. It can be related to the incompleteness θ by the following relation [13]:

Xν−1
j¼1

pϑj þ θ−
Xν−1
j¼1

pj

 !ϑ

¼ 1 ð36Þ

The phase space cells, which represent the stationary states, was proven to form a

subset of all the cells on which the evolution acts as a one-cycle permutation: this kind

of ergodicity has been defined ergodicity for irreversibility [54]. Moreover, in non-

equilibrium transformation, the volume of the phase space was proven to contract in-

definitely [54]. Recently, considering the expression for the probability pγi of a path γi
and the statistical results on the entropy generation [54], it was proven that [13]:

∂Sg
∂pγi

≤
∂Sg
∂pγj

if pγi≤pγj ð37Þ

which means that the paths are statistically ordered. The stochastic order of the path

proves that the evolution of the bio-systems is related to their irreversibility and the

quantity useful to evaluate the allowed paths and their probability is the entropy gener-

ation. Consequently, a link between the bioengineering thermodynamic approach pro-

posed and the dynamical system approach is obtained.
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